Hidden QIM Watermarking on Compressed Data Using Channel Coding and Lifting

  • Santi P. Maity
  • Claude Delpha
  • Sofiane Braci
  • Rémy Boyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


This paper investigates the scope of application of channel coding on compressed host data for watermarking using dither modulation (DM) based quantization index modulation (QIM). Lifting based wavelet is used to decompose the encoded compressed data in integer coefficients. The relative gain on imperceptibility and robustness performance are reported for direct watermark embedding on entropy decoded host, using repetition code, convolution code, and finally the combined use of channel codes and lifting. Simulation results show that 6.24 dB (9.50 dB) improvement in document- to-watermark ratio (DWR) for watermark power at 12. 73 dB (16.81 dB) and 15 dB gain in noise power for watermark decoding at bit error rate (BER) of 10− 2 are achieved, respectively over direct watermarking on entropy decoded data.


Discrete Cosine Transform Watermark Scheme Channel Code Robustness Performance Watermark Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Wong, P.H., Au, O.C.: A capacity estimation technique for JPEG-to-JPEG image watermarking. IEEE Trans. on Cir. & Sys. for Video Tech. 13, 747–752 (2003)Google Scholar
  2. 2.
    Langelaar, G.C., Setyawan, I., Lagendijk, R.L.: Watermarking digital image and video data. IEEE Signal Proc. Mag. 17, 20–46 (2000)CrossRefGoogle Scholar
  3. 3.
    Fridrich, J., Goljan, M., Chen, Q., Pathak, V.: Lossless data embedding with file size preservation. In: Proc. EI, Security, Steganography, Watermarking Multimedia Contents VI, vol. 5306, pp. 354–365 (2004)Google Scholar
  4. 4.
    Mobasseri, B.J., Berger, R.J.: A foundation for watermarking in compressed domain. IEEE Signal Proc. Lett. 12, 399–402 (2005)CrossRefGoogle Scholar
  5. 5.
    Choi, Y., Aizawa, K.: Digital watermarking using interblock correlation. In: Proc. IEEE Int. Conf. Inf. Tech.:Coding and Compr., pp. 133–138 (2000)Google Scholar
  6. 6.
    Luo, W., Heileman, G.L., Pizano, C.E.: Fast and robust watermarking for JPEG files. In: Proc. IEEE 5th Southwest Symp. Image Anal. and Interp., pp. 158–162 (2002)Google Scholar
  7. 7.
    Wu, G., Yang, E.H.: Joint watermarking and compression using scalar quantization for maximizing robustness in the presence of additive gaussian attacks. IEEE Tran. Signal Proc. 53, 834–844 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Adams, M.D., Kossentini, F.: Reversible integer-to-integer wavelet transforms for image compression: performance evaluation and analysis. IEEE Trans. Image Proc. 9, 1010–1024 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chen, B., Wornell, G.W.: Quantization index modulation: a class of provably good methods for digital watermarking and information embedding. IEEE Trans. on Information Th. 47, 1423–1443 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Voloshynovskiy, S., Pun, T.: Capacity security analysis of data hiding technologies. In: Proc. IEEE Int. Conf. Multimedia and Expo., Laussanne, Switzerland, pp. 477–480 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Santi P. Maity
    • 1
  • Claude Delpha
    • 1
  • Sofiane Braci
    • 1
  • Rémy Boyer
    • 1
  1. 1.Laboratiore des Signaux et Systèmes (L2S)CNRS, Université Paris-Sud XI (UPS), SUPELECFrance

Personalised recommendations