Color Image Segmentation Based on Vectorial Multiscale Diffusion with Inter-scale Linking

  • V. B. Surya Prasath
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


We propose a segmentation scheme for digital color images using vectorial multiscale anisotropic diffusion. By integrating the edge information, diffusion based schemes can remove noise effectively and create fine to coarse set of images known as scale-space. Segmentation is performed by effectively tracking edges in an inter-scale manner across this scale space family of images. The regions are connected according to color coherency, and scale relation along time axis of the family is taken into account for the final segmentation result. Fast total variation diffusion and anisotropic diffusion facilitate denoising and create homogenous regions separated by strong edges. They provide a roadmap for further segmentation with persistent edges and flat regions. The scheme is general in the sense that other anisotropic diffusion schemes can be incorporated depending upon the requirement. Numerical simulations show the advantage of the proposed scheme on noisy color images.


Image Segmentation Multiscale diffusion Nonlinear scale space Color images 


  1. 1.
    Aubert, G., Kornprobst, P.: Mathematical problems in image processing: Partial differential equations and the calculus of variations. Applied Mathematical Sciences, vol. 147. Springer, New York (2006)zbMATHGoogle Scholar
  2. 2.
    Bresson, X., Chan, T.F.: Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging 2(4), 455–484 (2008)zbMATHCrossRefGoogle Scholar
  3. 3.
    Brox, T., Weickert, J.: A TV flow based local scale measure for texture discrimination. In: Pajdla, T., Matas, J.G. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 578–590. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Caselles, V., Coll, B., Morel, J.-M.: Geometry and Color in Natural Images. J. Math. Imag. Vis. 16, 89–105 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient Graph-Based Image Segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)CrossRefGoogle Scholar
  7. 7.
    Florack, L.M., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, A.M.: Linear scale-space. J. Math. Imag. Vis. 4(4), 325–351 (1994)CrossRefGoogle Scholar
  8. 8.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–156 (1998)CrossRefGoogle Scholar
  9. 9.
    Morel, J.-M., Solimini, S.: Variational Methods in Image Processing. Birkhauser, Boston (1994)zbMATHGoogle Scholar
  10. 10.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Machine Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  11. 11.
    Vanhamel, I., Mihai, C., Sahli, H., Katartzis, A., Pratikakis, I.: Scale selection for compact scale-space representation of vector-valued images. Int. J. Comput. Vis. 84(2), 194–204 (2009)CrossRefGoogle Scholar
  12. 12.
    Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford Shah model. Int. J. Computer Vis. 50(3), 271–293 (2002)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • V. B. Surya Prasath
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology MadrasIndia

Personalised recommendations