Image Enhancement Using Multi-objective Genetic Algorithms

  • Dinabandhu Bhandari
  • C. A. Murthy
  • Sankar K. Pal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


Given an image, there is no unique measure to quantitatively judge the quality of an image enhancement operator. It is also not clear which measure is to be used for the given image. The present work expresses the problem as a multi-objective optimization problem and a methodology has been proposed based on multi-objective genetic algorithm (MOGA). The methodology exploits the effectiveness of MOGA for searching global optimal solutions in selecting an appropriate image enhancement operator.


Image Enhancement Multi Objective Genetic Algorithms Ambiguity Measures 


  1. 1.
    Rosenfeld, A., Kak, A.C.: Digital picture processing. Academic Press, New York (1982)Google Scholar
  2. 2.
    Ekstrom, M.P.: Digital image processing techniques. Academic Press, New York (1984)Google Scholar
  3. 3.
    Kundu, M.K., Pal, S.K.: Automatic selection of object enhancement operator with quantitative justification based on fuzzy set theoretic measure. Pattern Recognition Letters 11, 811–829 (1990)zbMATHCrossRefGoogle Scholar
  4. 4.
    Pal, S.K., Bhandari, D., Kundu, M.K.: Genetic algorithms for optimal image enhancement. Pattern Recognition Letters 15, 261–271 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Vlachos, I.K., Sergiadis, G.D.: Parametric indices of fuzziness for automated image enhancement. Fuzzy Sets and Systems 157, 1126–1138 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cheng, H.D., Li, J.: Fuzzy homogeneity and scale-space approach to color image segmentation. Pattern Recognition 36, 1545–1562 (2003)CrossRefGoogle Scholar
  7. 7.
    Munteanu, C., Rosa, A.: Gray-scale image enhancement as an automatic process driven by evolution. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics 34(2), 1292–1298 (2004)CrossRefGoogle Scholar
  8. 8.
    Srinivas, N., Deb, K.: Multiobjective function optimization using nondominated sorting genetic algorithms. Evolutionary Computation Journal 2(3), 221–248 (1995)CrossRefGoogle Scholar
  9. 9.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, Chichester (2001)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dinabandhu Bhandari
    • 1
  • C. A. Murthy
    • 1
  • Sankar K. Pal
    • 1
  1. 1.Center for Soft Computing ResearchIndian Statistical InstituteKolkataIndia

Personalised recommendations