Advertisement

Semantic Relation between Words with the Web as Information Source

  • Tanmay Basu
  • C. A. Murthy
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)

Abstract

Semantic relation is an important concept of information science. Now a days it is widely used in semantic web. This paper aims to present a measure to automatically determine semantic relation between words using web as knowledge source. It explores whether two words are related or not even if they are dissimilar in meaning. The proposed formula is a function of frequency of occurrences of the words in each document in the corpus. This relationship measure will be useful to extract semantic information from the web . Experimental evaluation on ten manually selected word pairs using the WebKb data as information source demonstrates the effectiveness of the proposed semantic relation.

Keywords

semantic relation page count 

References

  1. 1.
    Gracia, J.L., Mena, E.: Web Based Measure of Semantic Relatedness. In: Bailey, J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS, vol. 5175, pp. 136–150. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Kosala, R., Blockeel, H.: Web Mining Research: A Survey. ACM SIGKDD Explorations 2, 1–15 (2000)CrossRefGoogle Scholar
  3. 3.
    Cilibrasi, R.L., Vitanyi, P.M.: The Google similarity distance. IEEE Transactions on Knowledge and Data Engineering 19(3), 370–383 (2007)CrossRefGoogle Scholar
  4. 4.
    Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring Semantic Similarity Between Words Using Web Search Engines. In: Proceedings of WWW 2007, Banff, Canada (2007)Google Scholar
  5. 5.
  6. 6.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American, 34–43 (May 2001)Google Scholar
  7. 7.
    Catherine, M.C., Frank, S.M.: Which Semantic Web. In: Proceedings of ACM Hypertext, pp. 57–66 (2003)Google Scholar
  8. 8.
    Strube, M., Ponzetto, S.P.: Wikirelate! Computing Semantic Relatedness Using Wikipedia. In: AAAI. AAAI Press, Menlo Park (2006)Google Scholar
  9. 9.
    Pedersen, T., Banerjee, S.P.: Maximizing Semantic Relatedness to Perform Word Sense Disambiguation. Research Report. UMSI 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Tanmay Basu
    • 1
  • C. A. Murthy
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations