Advertisement

A Relation Mining and Visualization Framework for Automated Text Summarization

  • Muhammad Abulaish
  • Jahiruddin
  • Lipika Dey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)

Abstract

In this paper, we present a relation mining and visualization framework to identify important semi-structured information components using semantic and linguistic analysis of text documents. The novelty of the paper lies in identifying key snippet from text to validate the interaction between a pair of entities. The extracted information components are exploited to generate semantic network which provides distinct user perspectives and allows navigation over documents with similar information components. The efficacy of the proposed framework is established through experiments carried out on biomedical text documents extracted through PubMed search engine.

Keywords

Relation mining Text mining Text visualization Text summarization Natural language processing 

References

  1. Gaizauskas, R., Demetriou, G., Artymiuk, P.J., Willett, P.: Protein Structures and Information Extraction from Biological Texts: the PASTA System. Bioinformatics 19(1), 135–143 (2003)CrossRefGoogle Scholar
  2. Ono, T., Hishigaki, H., Tanigami, A., Takagi, T.: Automated Extraction of Information on Protein-Protein interactions from the Biological Literature. Bioinformatics 17(2), 155–161 (2001)CrossRefGoogle Scholar
  3. Plaisant, C., Fekete, J.-D., Grinsteinn, G.: Promoting Insight-based Evaluation of Visualizations: From Contest to Benchmark Repository. IEEE Transactions on Visualization and Computer Graphics 14(1), 120–134 (2008)CrossRefGoogle Scholar
  4. Rinaldi, F., Scheider, G., Andronis, C., Persidis, A., Konstani, O.: Mining Relations in the GENIA Corpus. In: Proceedings of the 2nd European Workshop on Data Mining and Text Mining for Bioinformatics, Pisa, Italy, pp. 61–68 (2004)Google Scholar
  5. Sekimizu, T., Park, H.S., Tsujii, J.: Identifying the Interaction between Genes and Genes Products based on Frequently Seen Verbs in Medline Abstract. Genome Informatics 9, 62–71 (1998)Google Scholar
  6. Thomas, J., Milward, D., Ouzounis, C., Pulman, S., Carroll, M.: Automatic Extraction of Protein Interactions from Scientific Abstracts. In: Pacific Symposium on Biocomputing, pp. 538–549 (2000)Google Scholar
  7. Zheng, H.-T., Borchert, C., Kim, H.-G.: Exploiting Gene Ontology to Conceptualize Biomedical Document Collections. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 375–389. Springer, Heidelberg (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Muhammad Abulaish
    • 1
  • Jahiruddin
    • 1
  • Lipika Dey
    • 2
  1. 1.Department of Computer ScienceJamia Millia IslamiaNew DelhiIndia
  2. 2.Innovation LabsTata Consultancy ServicesNew DelhiIndia

Personalised recommendations