Mining Calendar-Based Periodicities of Patterns in Temporal Data

  • Mala Dutta
  • Anjana Kakoti Mahanta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


An efficient algorithm with a worst-case time complexity of O(n logn) is proposed for detecting seasonal (calendar-based) periodicities of patterns in temporal datasets. Hierarchical data structures are used for representing the timestamps associated with the data. This representation facilitates the detection of different types of seasonal periodicities viz. yearly periodicities, monthly periodicities, daily periodicities etc. of patterns in the temporal dataset. The algorithm is tested with real-life data and the results are given.


temporal datasets pattern detection periodicity mining 


  1. 1.
    Ale, J.M., Rossi, G.H.: An Approach to Discovering Temporal Association Rules. In: Proceedings of 2000 ACM symposium on Applied Computing, vol. 1, pp. 294–300. ACM, New York (2000)CrossRefGoogle Scholar
  2. 2.
    Elfeky, M.G., Aref, W.G., Elmagarmid, A.K.: Periodicity detection in time series databases. IEEE Transactions on Knowledge and Data Engineering 17(7), 875–887 (2005)CrossRefGoogle Scholar
  3. 3.
    Lee, G., Yang, W., Lee, J.: A parallel algorithm for mining multiple partial periodic patterns. Information Sciences 176(24), 3591–3609 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Li, Y., Ning, P., Wang, X.S., Jajodia, S.: Discovering Calendar-based Temporal Association Rules. Data and Knowledge Engineering 44(2), 193–218 (2003)CrossRefGoogle Scholar
  5. 5.
    Ma, S., Hellestein, J.: Mining Partially Periodic Event Patterns with Unknown Periods. In: Proceedings of 17th International Conference on Data Engineering, pp. 205–214. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  6. 6.
    Mahanta, A.K., Mazarbhuiya, F.A., Baruah, H.K.: Finding Locally and Periodically Frequent Sets and Periodic Association Rules. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 576–582. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Mahanta, A.K., Mazarbhuiya, F.A., Baruah, H.K.: Finding calendar-based periodic patterns. Pattern Recognition Letters 29(9), 1274–1284 (2008)CrossRefGoogle Scholar
  8. 8.
    Nguyen, C.L., Nelson, D.E.: Mining periodic patterns from floating and ambiguous time segments. In: IEEE International Conference on Man and Cybernetics, vol. 4, pp. 3622–3627 (2005)Google Scholar
  9. 9.
    Yang, J., Wang, W., Yu, P.S.: Mining Asynchronous Periodic Patterns in Time Series Data. In: Proceedings of 6th International Conference on Knowledge Discovery and Data Mining, pp. 275–279 (2000)Google Scholar
  10. 10.
    Zhang, M., Kao, B., Cheung, D.W., Yip, K.Y.: Mining periodic patterns with gap requirement from sequences. ACM Transactions on Knowledge Discovery from Data (TKDD), article 7 1(2) (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mala Dutta
    • 1
  • Anjana Kakoti Mahanta
    • 1
  1. 1.Gauhati UniversityIndia

Personalised recommendations