Advertisement

Anomaly Detection from Call Data Records

  • Nithi
  • Lipika Dey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)

Abstract

In this paper, we propose an efficient algorithm for anomaly detection from call data records. Anomalous users are detected based on fuzzy attribute values derived from their communication patterns. A clustering based algorithm is proposed to generate explanations to assist human analysts in validating the results.

Keywords

Anomaly detection Fuzzy logic DBSCAN Algorithm Principal Component Analysis 

References

  1. 1.
    Swing, E.: Solving the Cell Phone Calls Challenge with the Prajna Project. In: IEEE Symposium on Visual Analytics Science and Technology, Columbus, Ohio, USA (2008)Google Scholar
  2. 2.
    Payne, J., Solomon, J., Sankar, R., McGrew, B.: Grand Challenge Award: Interactive Visual Analytics Palantir: The Future of Analysis. In: IEEE Symposium on Visual Analytics Science and Technology, Columbus, Ohio, USA (2008)Google Scholar
  3. 3.
    Chandola, V., Banerjee, A., Kumar, V.: Anomaly Detection: A Survey. To Appear in ACM Computing Surveys (2009)Google Scholar
  4. 4.
    Wasserman, S., Faust, K.: Social Network Analysis: Methods & Applications. Cambridge University Press, Cambridge (1994)Google Scholar
  5. 5.
    Lin, S., Chalupsky, H.: Discovering and explaining abnormal nodes in semantic graphs. IEEE Transactions on Knowledge and Data Engineering 20 (2008)Google Scholar
  6. 6.
    Chalupsky, H.: Using KOJAK Link Discovery Tools to Solve the Cell Phone Calls Mini Challenge. In: Proceedings of the IEEE Symposium on Visual Analytics Science and Technology, Portugal (2008)Google Scholar
  7. 7.
    Ross, T.J.: Fuzzy Logic with Engineering Applications. Wiley, Chichester (2004)zbMATHGoogle Scholar
  8. 8.
    Ramaswamy, S., Rastogi, R., Shim, K.: Efficient Algorithms for Mining Outliers from Large Data Sets. In: Proceedings of the 2000 ACM SIGMOD international conference on Management of data, Texas, United States (2000)Google Scholar
  9. 9.
    IEEE VAST Challenge (2008), http://www.cs.umd.edu/hcil/VASTchallenge08

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Nithi
    • 1
  • Lipika Dey
    • 1
  1. 1.TCS Innnovation LabsDelhi

Personalised recommendations