A Constraint Based Method for Optimization in Metabolic Pathways

  • Mouli Das
  • Subhasis Mukhopadhyay
  • Rajat K. De
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


The analysis of pathways in metabolic networks has become an important approach for understanding metabolic systems. Constraint-based approaches recently brought new insight into our understanding of metabolism. Here we introduce a method for identifying optimal metabolic pathways. The method, generates data on reaction fluxes based on biomass conservation constraint and formulates constraints incorporating weighting coefficients corresponding to concentration of enzymes catalyzing the reactions. The effectiveness of the present method is demonstrated on the pentose phosphate pathway (PPP) in T. cruzi and on a large network of the plant polyamine pathway existing in the literature. A comparative study with the existing extreme pathway analysis (EPA) also forms a part of this investigation.


FBA stoichiometric matrix polyamine pathway 


  1. 1.
    Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A., Palsson, B.O.: Metabolic path-ways in the post-genome era. Trends in Biochemical Sciences 28, 250–258 (2003)CrossRefGoogle Scholar
  2. 2.
    Lee, J.M., Gianchandani, E.P., Papin, J.A.: Flux balance analysis in the era of metabolomics. Briefings in Bioinformatics 7, 1–11 (2006)CrossRefGoogle Scholar
  3. 3.
    Schilling, C.H., Letscher, D., Palsson, B.O.: Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203, 229–248 (2000)CrossRefGoogle Scholar
  4. 4.
    Stryer, L., Berg, J.M., Tymoczko, J.L., Clarke, N.D. (eds.): Biochemistry. W H Freeman, New York (1998)Google Scholar
  5. 5.
    Montoya, A.R., Lee, W.P., Bassilian, S., Lim, S., Trebukhina, R.V., Kazhyna, M.V., Ciudad, C.J., Noe, V., Centelles, J.J., Cascante, M.: Pentose phosphate cycle oxidative and nonoxidative balance: A new vulnerable target for overcoming drug resistance in cancer. Int. J. Cancer 119, 2733–2741 (2006)CrossRefGoogle Scholar
  6. 6.
    Mapelli, S., Brambilla, I.M., Radyukina, N.L., Ivanov, Y.V., Kartashov, A.V.: Free and bound polyamines changes in different plants as a consequence of uv-b light irradiation. Gen. Appl. Plant Physiology (special issue 34), 55–66 (2008)Google Scholar
  7. 7.
    Kumar, A., Altabella, T., Taylor, M.A., Tiburcio, A.F.: Recent advances in polyamine research. Trends Plant Sci. 2, 124–130 (1997)CrossRefGoogle Scholar
  8. 8.
    Malmberg, R.L., Watson, M.B., Galloway, G.L., Yu, W.: Molecular genetic analyses of plant polyamines. Critical Reviews in Plant Sciences 17, 199–224 (1998)CrossRefGoogle Scholar
  9. 9.
    Ponce, M., Martinez, L., Galmarini, C.: Influence of ccc, putrescine and gellam gum concentration on gynogenic embryo induction in allium cepa. Biologia Plantarum 50(3), 425–428 (2006)CrossRefGoogle Scholar
  10. 10.
    Igoillo-Esteve, M., Maugeri, D., Stern, L., Beluardi, P., Cazzulo, M.J.: The pentose phosphate pathway in trypanosoma cruzi: a potential target for the chemotherapy of chagas disease. Annals of the Brazilian Academy of Sciences 79, 649–663 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Mouli Das
    • 1
  • Subhasis Mukhopadhyay
    • 2
  • Rajat K. De
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia
  2. 2.Department of Bio-Physics, Molecular Biology and BioinformaticsCalcutta UniversityKolkataIndia

Personalised recommendations