Application of Neural Networks in Preform Design of Aluminium Upsetting Process Considering Different Interfacial Frictional Conditions

  • Ajay Kumar Kaviti
  • K. K. Pathak
  • M. S. Hora
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


Design of the optimum preform for near net shape manufacturing is a crucial step in upsetting process design. In this study, the same is arrived at using artificial neural networks (ANN) considering different interfacial friction conditions between top and bottom die and billet interface. Back propagation neural networks is trained based on finite element analysis results considering ten different interfacial friction conditions and varying geometrical and processing parameters, to predict the optimum preform for commercial Aluminium. Neural network predictions are verified for three new problems of commercial aluminum and observed that these are in close match with their simulation counterparts.


Artificial neural network Preform finite element upsetting deformation 


  1. 1.
    Antonio, C.A.C., Dourado, N.M.: Metal-forming process optimisation by inverse evolutionary search. Journal of Materials Processing Technology 121(2-3), 403–413 (2002)CrossRefGoogle Scholar
  2. 2.
    Antonio, C.C., Castro, C.F., Sousa, L.C.: Eliminating forging defects using genetic algorithms. Materials and Manufacturing Processes 20(3), 509–522 (2005)CrossRefGoogle Scholar
  3. 3.
    Bramley, A.: UBET and TEUBA: fast methods for forging simulation and preform design. Journal of Materials Processing Technology 116(1), 62–66 (2001)CrossRefGoogle Scholar
  4. 4.
    Chang, C.C., Bramley, A.N.: Forging preform design using a reverse simulation approach with the upper bound finite element procedure. Proceedings of The Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science 214(1), 127–136 (2000)CrossRefGoogle Scholar
  5. 5.
    Tumer, H., Sonmez, F.O.: Optimum shape design of die and preform for improved hardness distribution in cold forged parts. Journal of Materials Processing Technology (Article in the Press)Google Scholar
  6. 6.
    Ko, D.C., Kim, D.H., Kim, B.M.: Application of artificial neural network and Taguchi method to preform design in metal forming considering workability. International Journal of Machine Tools & Manufacture 39(5), 771–785 (1999)CrossRefGoogle Scholar
  7. 7.
    Lee, J.H., Kim, Y.H., Bae, W.B.: An upper-bound elemental technique approach to the process design of asymmetric forgings. Journal of Materials Processing Technology 72(1), 141–151 (1997)CrossRefGoogle Scholar
  8. 8.
    Liu, Q.B., Wu, S.C., Sun, S.: Preform design in axisymmetric forging by a new FEM-UBET method. Journal of Materials Processing Technology 74(1-3), 218–222 (1998)CrossRefGoogle Scholar
  9. 9.
    Meyers, M.A., Chawla, K.K.: Mechanical Behaviour of Materials. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  10. 10.
    Ou, H., Lan, J., Armstrong, C.G.: An FE simulation and optimisation approach for the forging of aeroengine components. Journal of Materials Processing Technology 151(1-3), 208–216 (2004)CrossRefGoogle Scholar
  11. 11.
    Park, J.J., Hwang, H.S.: Preform design for precision forging of an asymmetric rib-web type component. Journal of Materials Processing Technology 187, 595–599 (2007)CrossRefGoogle Scholar
  12. 12.
    Poshala, G., Ganesan, P.: An analysis of formability of aluminium preforms using neural network. Journal of Materials Processing Technology 205(1-3), 272–282 (2008)CrossRefGoogle Scholar
  13. 13.
    Poursina, M., Antonio, C.A.C., Castro, C.F.: Preform optimal design in metal forging using genetic algorithms. Engineering Computations 21(5-6), 631–650 (2004)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ranatunga, V., Gunasekera, J.S.: UBET-based numerical modeling of bulk deformation processes. Journal of Materials Engineering and Performance 15(1), 47–52 (2006)CrossRefGoogle Scholar
  15. 15.
    Repalle, J., Grandhi, R.V.: Reliability-based preform shape design in forging. Communications in Numerical Methods In Engineering 21(11), 607–617 (2005)zbMATHCrossRefGoogle Scholar
  16. 16.
    Roy, R., Chodnikiewicz, K., Balendra, R.: Interpolation of Forging preform shapes using neural networks. Journal of Materials Processing Technology 45(1-4), 695–702 (1994)CrossRefGoogle Scholar
  17. 17.
    Thiyagarajan, N., Grandhi, R.V.: Multi-level design process for 3-D preform shape optimization in metal forming. Journal of Materials Processing Technology 170(1-2), 421–429 (2005)CrossRefGoogle Scholar
  18. 18.
    Tomov, B.I., Gagov, V.I., Radev, R.H.: Numerical simulations of hot die forging processes using finite element method. Journal of Materials Processing Technology 153, 352–358 (2004)CrossRefGoogle Scholar
  19. 19.
    Shim, H.: Optimal preform design for the free forging of 3D shapes by the sensitivity method. Journal of Materials Processing Technology 134(1), 99–107 (2003)CrossRefGoogle Scholar
  20. 20.
    Srikanth, A., Zabaras, N.: Shape optimization and preform design in metal forming processes. Computer Methods in Applied Mechanics and Engineering 190(13-14), 1859–1901 (2000)zbMATHCrossRefGoogle Scholar
  21. 21.
    Hertz, J., Krogh, A.: Introduction to the Theory of Neural Networks: Addison- Wesley Publishing Company. Addison-Wesley Publishing Company, Reading (1991)Google Scholar
  22. 22.
    User’s manual, MSC. Marc, MSC Software Corporation, Santa Ana, California 92707 USA (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Ajay Kumar Kaviti
    • 1
  • K. K. Pathak
    • 2
  • M. S. Hora
    • 3
  1. 1.Department of Mechanical EngineeringSISTecBhopalIndia
  2. 2.Advanced Materials and Processes Research Institute (CSIR)BhopalIndia
  3. 3.Department of Applied MechanicsMANITBhopalIndia

Personalised recommendations