Advertisement

Interactive Rough-Granular Computing in Pattern Recognition

  • Andrzej Skowron
  • Jan Bazan
  • Marcin Wojnarski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)

Abstract

We discuss the role of generalized approximation spaces and operations on approximation spaces in searching for relevant patterns. The approach is based on interactive rough-granular computing (IRGC) in the WisTech program. We also present results on approximation of complex vague concepts in real-life projects from different domains using the approach based on ontology approximation. Software projects supporting IRGC are reported.

Keywords

Atomic Formula Approximation Space Granular Computing Minimal Description Length Principle Approximation Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bazan, J.G.: Hierarchical classifiers for complex spatio-temporal concepts. In: Peters, J.F., Skowron, A., Rybiński, H. (eds.) Transactions on Rough Sets IX. LNCS, vol. 5390, pp. 474–750. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bazan, J., Skowron, A., Swiniarski, R.: Rough sets and vague concept approximation: From sample approximation to adaptive learning. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 39–62. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Grzymała-Busse, J., Rza̧sa, W.: Local and global approximations for incomplete data. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets VIII. LNCS, vol. 5084, pp. 21–34. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2008)Google Scholar
  5. 5.
    Jankowski, A., Skowron, A.: Logic for artificial intelligence: The Rasiowa-Pawlak school perspective. In: Ehrenfeucht, A., Marek, V., Srebrny, M. (eds.) Andrzej Mostowski and Foundational Studies, pp. 106–143. IOS Press, Amsterdam (2008)Google Scholar
  6. 6.
    Ng, K.S., Lloyd, J.W., Uther, W.T.B.: Probabilistic modelling, inference and learning using logical theories. Annals of Mathematics and Artificial Intelligence 54(1-3), 159–205 (2008)zbMATHCrossRefGoogle Scholar
  7. 7.
    Nguyen, H.S.: Approximate Boolean Reasoning: Foundations and Applications in Data Mining. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 344–523. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Nguyen, H.S., Jankowski, A., Skowron, A., Stepaniuk, J., Szczuka, M.: Discovery of process models from data and domain knowledge: A rough-granular approach. In: Yao, J.T. (ed.) Novel Developments in Granular Computing: Applications for Advanced Human Reasoning and Soft Computation, IGI Global, Hershey (accepted)Google Scholar
  9. 9.
    Pal, S.K., Shankar, B.U., Mitra, P.: Granular computing, rough entropy and object extraction. Pattern Recognition Letters 26(16), 2509–2517 (2005)CrossRefGoogle Scholar
  10. 10.
    Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)Google Scholar
  11. 11.
    Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3–27 (2007); Rough sets: Some extensions. Information Sciences 177(1), 28–40zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pedrycz, W., Skowron, A., Kreinovich, V. (eds.): Handbook of Granular Computing. John Wiley & Sons, New York (2008)Google Scholar
  13. 13.
    Peters, J., Henry, C.: Reinforcement learning with approximation spaces. Fundamenta Informaticae 71(2,3), 323–349 (2006)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Rissanen, J.: Modeling by shortest data description. Automatica 14, 465–471 (1978)zbMATHCrossRefGoogle Scholar
  15. 15.
    The Rough Set Interactive Classificstion Engine (RoughICE), http://logic.mimuw.edu.pl/~bazan/roughice
  16. 16.
    The Rough Set Exploration System (RSES), http://logic.mimuw.edu.pl/~rses
  17. 17.
    The RSES-lib project, http://rsproject.mimuw.edu.pl
  18. 18.
  19. 19.
    The TunedIT platform, http://tunedit.org/
  20. 20.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Skowron, A., Stepaniuk, J., Peters, J., Swiniarski, R.: Calculi of approximation spaces. Fundamenta Informaticae 72(1-3), 363–378 (2006)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Skowron, A., Stepaniuk, J., Peters, J.F., Swiniarski, R.: Approximation spaces revisited. In: Proceedings of the Concurrency, Specification & Programming 2009 (CS&P 2009), Przegorzały, Kraków, Poland, September 28-30, pp. 538–549. Warsaw University (2009)Google Scholar
  23. 23.
    Skowron, A., Szczuka, M.: Toward interactive computations: A rough-granular approach. In: Koronacki, J., Wierzchon, S.T., Ras, Z.W., Kacprzyk, J. (eds.) Advances in Machine learning II, Dedicated to the memory of Ryszard Michalski. Studies in Computational Intelligence, vol. 263, pp. 1–20. Springer, Heidelberg (2009) (in print)Google Scholar
  24. 24.
    Ziarko, W.: Variable precision rough set model. Journal of Computer and System Sciences 46, 39–59 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Andrzej Skowron
    • 1
  • Jan Bazan
    • 2
  • Marcin Wojnarski
    • 3
  1. 1.Institute of MathematicsWarsaw UnvisersityWarsawPoland
  2. 2.Chair of Computer ScienceUniversity of RzeszówRzeszówPoland
  3. 3.Faculty of Mathematics, Informatics and MechanicsWarsaw UniversityWarsawPoland

Personalised recommendations