Multi-objective Evolutionary Feature Selection

  • Partha Pratim Kundu
  • Sushmita Mitra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5909)


A new method of evolutionary feature selection, using multiobjective optimization in terms of fuzzy proximity and feature set cardinality, is developed. Results on two datasets indicate selection of the correct feature subset.


Feature selection Multi-objective optimization Proximity 


  1. 1.
    Banerjee, M., Mitra, S., Banka, H.: Evolutionary-rough feature selection in gene expression data. IEEE Trans. Syst. Man Cybern Part C 37, 622–632 (2007)CrossRefGoogle Scholar
  2. 2.
    Goldberg, D.E.: Genetic Alogorithm in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)Google Scholar
  3. 3.
    Deb, K.: Multi-Objective Optimiztion using Evolutionary Algorithms. John Wiley & Sons, Chichester (2002)Google Scholar
  4. 4.
    Pedrycz, W., Loia, V., Senatore, S.: P-FCM: A proximity-based fuzzy clustering. Fuzzy Sets and Systems 148, 21–41 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice-Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  6. 6.
    Pal, S.K., Chakraborty, B.: Fuzzy set theoretic measure for automatic feature evaluation. IEEE Transactions on Systems, Man, and Cybernetics 16, 754–760 (1986)CrossRefGoogle Scholar
  7. 7.
    Ruck, D.W., Rogers, S.K., Kabrisky, M.: Feature selection using a multilayer perceptron. Neural Network Computing 20, 40–48 (1990)Google Scholar
  8. 8.
    Ishibuchi, H., Miyazaki, A.: Determination of inspection order for classifying new samples by neural networks. In: Proceedings of IEEE - International Conference on Neural Networks, Orlando, USA, pp. 2907–2910 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Partha Pratim Kundu
    • 1
  • Sushmita Mitra
    • 1
  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations