Skip to main content

Image-Guidance in Shaped Beam Radiosurgery and SBRT

  • Chapter
  • First Online:
Shaped Beam Radiosurgery
  • 876 Accesses

Abstract

From its inception, the practice of radiation oncology has relied on its practitioner’s ability to determine the location of the disease being treated. This may be accomplished through direct physical examination by the physician or through inference based on clinical knowledge of the disease process. In all cases, the best clinical outcomes are obtained when the disease location can be determined sufficiently well to completely encompass the intended target in prescribed ionizing radiation fields, as well as to protect healthy tissue from the same fields. Thus, radiation oncology has always relied on the best image guidance methods available at the time in order to obtain the maximum therapeutic ratios for successful treatment. Image guidance has two major roles to play in the practice of radiation oncology. First, it allows one to detect the location of disease within the patient for delineation of the target region. Second, it allows one to locate the specified target region at the time of treatment so that the patient can be positioned correctly with respect to the treatment field. The ability to detect both diseased and normal tissues has been greatly enhanced through advances in imaging technologies such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound (US), single-photon emission tomography (SPECT), and positron emission tomography (PET).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agazaryan N, Tenn SE, Desalles AA, Selch MT (2008) Image-guided radiosurgery for spinal tumors: methods, accuracy and patient intrafraction motion. Phys Med Biol 53:1715–1727

    Article  PubMed  Google Scholar 

  • Agazaryan N, Tenn S, Selch MT, Rehs J, Erbel S, Remmert G (2009) Monoscopic imaging for intra-fraction motion management. In: 11th international congress of the IUPESM. Munich

    Google Scholar 

  • Aird EG, Conway J (2002) CT simulation for radiotherapy treatment planning. Br J Radiol 75:937–949

    PubMed  CAS  Google Scholar 

  • Alezra D, Shchory T, Lifshitz I, Pfeffer R (2009) SU-FF-J-48: Localization accuracy of a gantry-mounted radioactive tracking system in the clinical radiation therapy environment. Med Phys 36(6):2486

    Article  Google Scholar 

  • Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets pattern analysis and machine intelligence. IEEE Trans PAMI 9:698–700

    Article  CAS  Google Scholar 

  • Biggs PJ, Goitein M, Russell MD (1985) A diagnostic X ray field verification device for a 10 MV linear accelerator. Int J Radiat Oncol Biol Phys 11:635–643

    Article  PubMed  CAS  Google Scholar 

  • Byhardt RW, Cox JD, Hornburg A, Liermann G (1978) Weekly localization films and detection of field placement errors. Int J Radiat Oncol Biol Phys 4:881–887

    Article  PubMed  CAS  Google Scholar 

  • Chavez GD, De Salles AAF, Solberg TD, Pedroso A, Espinoza D, Villablanca P (2005) Three-dimensional fast imaging employing steady-state acquisition magnetic resonance imaging for stereotactic radiosurgery of trigeminal neuralgia. Neurosurgery 56:E628, Discussion E

    Article  PubMed  Google Scholar 

  • Fallone BG, Murray B, Rathee S, Stanescu T, Steciw S, Vidakovic S, Blosser E, Tymofichuk D (2009) First MR images obtained during megavoltage photon irradiation from a prototype integrated linac-MR system. Med Phys 36: 2084–2088

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick JM, West JB, Maurer CR Jr (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17:694–702

    Article  PubMed  CAS  Google Scholar 

  • Ford EC, Herman J, Yorke E, Wahl RL (2009) 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. J Nucl Med 50:1655–1665

    Article  PubMed  Google Scholar 

  • Fu D, Kuduvalli G (2008) A fast, accurate, and automatic 2D-3D image registration for image-guided cranial radiosurgery. Med Phys 35:2180–2194

    Article  PubMed  Google Scholar 

  • Fuss M, Salter BJ, Cavanaugh SX, Fuss C, Sadeghi A, Fuller CD, Ameduri A, Hevezi JM, Herman TS, Thomas CR Jr (2004) Daily ultrasound-based image-guided targeting for radiotherapy of upper abdominal malignancies. Int J Radiat Oncol Biol Phys 59:1245–1256

    Article  PubMed  Google Scholar 

  • Gu X, Choi D, Men C, Pan H, Majumdar A, Jiang SB (2009) GPU-based ultra-fast dose calculation using a finite size pencil beam model. Phys Med Biol 54:6287–6297

    Article  PubMed  Google Scholar 

  • Gu X, Pan H, Liang Y, Castillo R, Yang D, Choi D, Castillo E, Majumdar A, Guerrero T, Jiang SB (2010) Imple­mentation and evaluation of various demons deformable image registration algorithms on a GPU. Phys Med Biol 55:207–219

    Article  PubMed  Google Scholar 

  • Hill DL, Batchelor PG, Holden M, Hawkes DJ (2001) Medical image registration. Phys Med Biol 46:R1–R45

    Article  PubMed  CAS  Google Scholar 

  • Horn BKP, Hilden HM, Negahdaripour S (1988) Closed-form solution of absolute orientation using orthonormal matrices. J Opt Soc Am A 5:1127–1135

    Article  Google Scholar 

  • ICRU (1999) Prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). ICRU, Bethesda

    Google Scholar 

  • Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45:773–789

    Article  PubMed  CAS  Google Scholar 

  • Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349

    Article  PubMed  Google Scholar 

  • Lam WC, Partowmah M, Lee DJ, Wharam MD, Lam KS (1987) On-line measurement of field placement errors in external beam radiotherapy. Br J Radiol 60:361–365

    Article  PubMed  CAS  Google Scholar 

  • Lutz W., Winston KR, Linear accelerator as a neurosurgical tool for stereotactic radiosurgery. Neurosurgery. 1988 Mar;22(3): 454–64.

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, Paliwal B, Kinsella T (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20:1709–1719

    Article  PubMed  CAS  Google Scholar 

  • Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16: 187–198

    Article  PubMed  CAS  Google Scholar 

  • Meeks SL, Bova FJ, Friedman WA, Buatti JM, Moore RD, Mendenhall WM (1998) IRLED-based patient localization for linac radiosurgery. Int J Radiat Oncol Biol Phys 41:433–439

    Article  PubMed  CAS  Google Scholar 

  • Men C, Gu X, Choi D, Majumdar A, Zheng Z, Mueller K, Jiang SB (2009) GPU-based ultrafast IMRT plan optimization. Phys Med Biol 54:6565–6573

    Article  PubMed  Google Scholar 

  • Milliken BD, Rubin SJ, Hamilton RJ, Johnson LS, Chen GT (1997) Performance of a video-image-subtraction-based patient positioning system. Int J Radiat Oncol Biol Phys 38:855–866

    Article  PubMed  CAS  Google Scholar 

  • Muacevic A, Staehler M, Drexler C, Wowra B, Reiser M, Tonn JC (2006) Technical description, phantom accuracy, and clinical feasibility for fiducial-free frameless real-time image-guided spinal radiosurgery. J Neurosurg Spine 5: 303–312

    Article  PubMed  Google Scholar 

  • Murphy MJ, Chang SD, Gibbs IC, Le QT, Hai J, Kim D, Martin DP, Adler JR Jr (2003) Patterns of patient movement during frameless image-guided radiosurgery. Int J Radiat Oncol Biol Phys 55:1400–1408

    Article  PubMed  Google Scholar 

  • Penney GP, Weese J, Little JA, Desmedt P, Hill DL, Hawkes DJ (1998) A comparison of similarity measures for use in 2-D-3-D medical image registration. IEEE Trans Med Imaging 17:586–595

    Article  PubMed  CAS  Google Scholar 

  • Ryu S, Jin JY, Jin R, Rock J, Ajlouni M, Movsas B, Rosenblum M, Kim JH (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636

    Article  PubMed  Google Scholar 

  • Schonemann PH (1968) On two-sided orthogonal Procrustes problems. Psychometrika 33:19–33

    Article  PubMed  CAS  Google Scholar 

  • Uematsu M, Fukui T, Shioda A, Tokumitsu H, Takai K, Kojima T, Asai Y, Kusano S (1996) A dual computed tomography linear accelerator unit for stereotactic radiation therapy: a new approach without cranially fixated stereotactic frames. Int J Radiat Oncol Biol Phys 35:587–592

    Article  PubMed  CAS  Google Scholar 

  • Wang LT, Solberg TD, Medin PM, Boone R (2001) Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 31:101–111

    Article  PubMed  CAS  Google Scholar 

  • Wells WM 3rd, Viola P, Atsumi H, Nakajima S, Kikinis R (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1:35–51

    Article  PubMed  Google Scholar 

  • Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach M III, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM (2006) Target localization and real-time tracking using the Calypso 4D localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 65:528–534

    Article  PubMed  Google Scholar 

  • Wurm RE, Erbel S, Schwenkert I, Gum F, Agaoglu D, Schild R, Schlenger L, Scheffler D, Brock M, Budach V (2008) Novalis frameless image-guided noninvasive radiosurgery: initial experience. Neurosurgery 62:A11–A17, Discussion A7–8

    Article  PubMed  Google Scholar 

  • Yan D, Vicini F, Wong J, Martinez A (1997) Adaptive radiation therapy. Phys Med Biol 42:123–132

    Article  PubMed  CAS  Google Scholar 

  • Yin FF, Guan H, Lu W (2005) A technique for on-board CT reconstruction using both kilovoltage and megavoltage beam projections for 3D treatment verification. Med Phys 32:2819–2826

    Article  PubMed  Google Scholar 

  • Yoo S, Kim GY, Hammoud R, Elder E, Pawlicki T, Guan H, Fox T, Luxton G, Yin FF, Munro P (2006) A quality assurance program for the on-board imagers. Med Phys 33: 4431–4447

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Tenn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tenn, S., Agazaryan, N. (2011). Image-Guidance in Shaped Beam Radiosurgery and SBRT. In: De Salles, A., et al. Shaped Beam Radiosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11151-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11151-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11150-1

  • Online ISBN: 978-3-642-11151-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics