Skip to main content

Prostate SBRT

  • Chapter
  • First Online:
  • 833 Accesses

Abstract

Prostate cancer (PC) is currently the most common male cancer in most western countries, representing 30% of malignant tumors in men (Jemal et al. 2006). The major prognostic factors in localized prostate cancer are Gleason score, initial prostate-specific antigen (iPSA) and T stage. The terms “organ confined” and “locally advanced” disease refer to T1-T2 and T3-T4 respectively. These three prognostic factors are combined in nomograms that predict the risk of microscopic extracapsular extension, seminal vesicle (SV), and nodal involvement (D’Amico et al. 1999; Partin et al. 1997). They provide a scientific basis for treatment choice (local, locoregional and/or hormonal), allow radiation oncologists to choose the clinical target volume (CTV: prostate  ±  SV  ±  iliac lymph nodes), and ultimately predict patient outcome (Kattan et al. 1998; Kattan et al. 2001; Kattan et al. 2000). Men with indolent tumors and limited life expectancy have least to gain from submitting them to the hazards of curative treatment (Albertsen et al. 2005) and are managed by watchful waiting. “Active surveillance” (AS) refers to the strict follow-up of indolent PC in young men, leaving the possibility of a curative treatment in case of evolution to an aggressive cancer. The only active treatment that has been compared to watchful waiting in a contemporary randomized trial is radical prostatectomy (RP). RP showed a significant survival benefit and is therefore considered the gold standard for the treatment of young men with organ confined PC (Bill-Axelson et al. 2005). Whether this holds true with current high dose - high precision radiotherapy (RT) techniques remains controversial. Freedom from biochemical failure (FFBF) after RP, brachytherapy (BT) and high-dose contemporary RT are comparable (Kupelian et al. 2004).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albertsen PC, Hanley JA, Fine J (2005) 20-year outcome ­following conservative management of clinically localized prostate cancer. JAMA 293:2095–2101

    Article  PubMed  CAS  Google Scholar 

  • Arcangeli S, Strigari L, Soete G et al (2009) Clinical and dosimetric predictors of acute toxicity after a 4-week hypofractionated external beam radiotherapy regimen for prostate cancer: results from a multicentric prospective trial. Int J Radiat Oncol Biol Phys 73(1):39–45

    Article  PubMed  Google Scholar 

  • Aubry JF, Beaulieu L, Girouard LM et al (2004) Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. Int J Radiat Oncol Biol Phys 60:30–39

    Article  PubMed  Google Scholar 

  • Bel A, van Herk M, Lebesque J (1996) Target margins for random geometrical uncertainties in conformal radiotherapy. Med Phys 23:1537–1545

    Article  PubMed  CAS  Google Scholar 

  • Bill-Axelson A, Holmberg L, Ruutu M et al (2005) Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 352:1977–1984

    Article  PubMed  CAS  Google Scholar 

  • Boersma LJ, van den Brink M, Bruce AM et al (1998) Estimation of the incidence of late bladder and rectum complications after high-dose (70–78 Gy) conformal for prostate cancer, using dose-volume histograms. Int J Radiat Oncol Biol Phys 41:83–92

    Article  PubMed  CAS  Google Scholar 

  • Bolla M, Collette L, Blank L et al (2002) Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360:103–108

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Hall EJ (1999) Fractionation and protraction for radiotherapy of prostate carcinoma. Int J Radiat Oncol Biol Phys 43:1095–1101

    Article  PubMed  CAS  Google Scholar 

  • Brenner DJ, Martinez AA, Edmundson GK et al (2002) Direct evidence that prostate tumours show high sensitivity to fractionation (low alpha/beta ratio), similar to late responding normal tissue. Int J Radiat Oncol Biol Phys 52:6–13

    Article  PubMed  Google Scholar 

  • Cellini N, Morganti AG, Mattiucci GC et al (2002) Analysis of intraprostatic failures in patients treated with hormonal therapy and radiotherapy: implications for conformal therapy planning. Int J Radiat Oncol Biol Phys 53:595–599

    Article  PubMed  Google Scholar 

  • Chappell R, Fowler J, Ritter M (2004) New data on the value of alpha/beta – evidence mounts that it is low. Int J Radiat Oncol Biol Phys 60:1002–1003

    PubMed  Google Scholar 

  • Court L, Rosen I, Mohan R et al (2003) Evaluation of mechanical precision and alignment uncertainties for an integrated CT/LINAC system. Med Phys 30:1198–1210

    Article  PubMed  Google Scholar 

  • Cox JD, Stetz J, Pajak TF (1995) Toxicity criteria of the radiation therapy oncology group (RTOG) and the European organization for research and treatment of cancer (EORTC). Int J Radiat Oncol Biol Phys 31:1341–1346

    Article  PubMed  CAS  Google Scholar 

  • D’Amico AV, Whittington R, Malkowicz SB et al (1999) Optimizing patient selection for dose escalation techniques using the prostate-specific antigen level, biopsy Gleason score, and clinical T-stage. Int J Radiat Oncol Biol Phys 45:1227–1233

    Article  PubMed  Google Scholar 

  • D’Amico AV, Manola J, Loffredo M et al (2004) 6-month androgen suppression plus radiation therapy vs. radiation therapy alone for patients with clinically localized prostate cancer: a randomized controlled trial. JAMA 292:821–827

    Article  PubMed  Google Scholar 

  • de Crevoisier R, Tucker SL, Dong L et al (2005) Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 62:965–973

    Article  PubMed  Google Scholar 

  • De Meerleer G, Villeirs G, Bral S et al (2005) The magnetic resonance detected intraprostatic lesion in prostate cancer: planning and delivery of intensity-modulated radiotherapy. Radiother Oncol 75:325–333

    Article  PubMed  Google Scholar 

  • Dearnaley DP, Hall E, Lawrence D et al (2005) Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. Br J Cancer 92:488–498

    Article  PubMed  CAS  Google Scholar 

  • Engels B, Soete G, Verellen D et al (2009) Conformal arc radiotherapy for prostate cancer: increased biochemical failure in patients with distended rectum on the planning CT in spite of image guidance by implanted markers. Int J Radiat Oncol Biol Phys 74(2):388–391

    Article  PubMed  Google Scholar 

  • Fiorino C, Sanguineti G, Cozzarini C et al (2003) Rectal dose-volume constraints in high-dose radiotherapy of localized prostate cancer. Int J Radiat Oncol Biol Phys 57:953–962

    Article  PubMed  Google Scholar 

  • Fowler J, Chappell R, Ritter M et al (2001) Is alpha/beta for prostate tumours really low? Int J Radiat Oncol Biol Phys 50:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Futterer JJ, Heijmink SW, Scheenen TW et al (2006) Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology 241:449–458

    Article  PubMed  Google Scholar 

  • Gibbs IC (2006) Frameless image-guided intracranial and extracranial radiosurgery using the Cyberknife robotic system. Cancer Radiothér 10:283–287

    Article  PubMed  CAS  Google Scholar 

  • Hanks GE, Hanlon AL, Pinover WH et al (2000) Dose selection for prostate cancer patients based on dose comparison and dose response studies. Int J Radiat Oncol Biol Phys 46:823–832

    Article  PubMed  CAS  Google Scholar 

  • Heemsbergen WD, Hoogeman MS, Witte MG et al (2007) Increased risk of biochemical and clinical failure for prostate patients with a large rectum at radiotherapy planning: results from the Dutch trial of 68 GY versus 78 Gy. Int J Radiat Oncol Biol Phys 67:1418–1424

    Article  PubMed  CAS  Google Scholar 

  • Huang E, Dong L, Chandra A et al (2002) Intrafraction prostate motion during IMRT for prostate cancer. Int J Radiat Oncol Biol Phys 53:261–268

    Article  PubMed  Google Scholar 

  • Hurkmans CW, Remeijer P, Lebesque JV et al (2001) Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 58:105–120

    Article  PubMed  CAS  Google Scholar 

  • Jaffray DA, Siewerdsen JH, Wong JW et al (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53:1337–1349

    Article  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2006) Cancer statistics, 2006. CA Cancer J Clin 56:106–130

    Article  PubMed  Google Scholar 

  • Kal HB, Van Gellekom MPR (2003) How low is the α/β ratio for prostate cancer? Int J Radiat Oncol Biol Phys 57: 1116–1121

    Article  PubMed  Google Scholar 

  • Kattan MW, Eastham JA, Stapleton AM et al (1998) A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 90:766–771

    Article  PubMed  CAS  Google Scholar 

  • Kattan MW, Zelefsky MJ, Kupelian PA et al (2000) Pretreatment nomogram for predicting the outcome of three-dimensional conformal radiotherapy in prostate cancer. J Clin Oncol 18:3352–3359

    PubMed  CAS  Google Scholar 

  • Kattan MW, Potters L, Blasko JC et al (2001) A preoperative nomogram for predicting freedom from recurrence after permanent prostate brachytherapy in prostate cancer. Urology 58:393–399

    Article  PubMed  CAS  Google Scholar 

  • Kestin L, Goldstein N, Vicini F et al (2002) Treatment of prostate cancer with radiotherapy: should the entire seminal vesicles be included in the clinical target volume? Int J Radiat Oncol Biol Phys 54:686–697

    Article  PubMed  Google Scholar 

  • King CR, Mayo CS (2000) Is the prostate α/β ratio of 1.5 from Brenner & Hall a modeling artifact? Int J Radiat Oncol Biol Phys 47:536–537

    Article  PubMed  CAS  Google Scholar 

  • Kuban D, Pollack A, Huang E et al (2003) Hazards of dose escalation in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 57:1260–1268

    Article  PubMed  Google Scholar 

  • Kupelian PA, Potters L, Khuntia D et al (2004) Radical prostatectomy, external beam radiotherapy <72 Gy, external beam radiotherapy  ≥  72 Gy, permanent seed implantation or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. Int J Radiat Oncol Biol Phys 58:25–33

    Article  PubMed  Google Scholar 

  • Kupelian PA, Thakkar VV, Khuntia D et al (2005) Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: long term outcomes. Int J Radiat Oncol Biol Phys 63:1463–1468

    Article  PubMed  Google Scholar 

  • Kutcher GJ, Mageras GS, Leibel SA (1995) Control, correction, and modeling of setup errors and organ motion. Semin Radiat Oncol 5:134–145

    Article  PubMed  Google Scholar 

  • Langen KM, Pouliot J, Anezinos C et al (2003) Evaluation of ultrasound-based prostate localization for image-guided radiotherapy. Int J Radiat Oncol Biol Phys 57:635–644

    Article  PubMed  CAS  Google Scholar 

  • Lattanzi J, McNeeley S, Pinover W et al (1999) A comparison of daily CT localization to a daily ultrasound-based system in prostate cancer. Int J Radiat Oncol Biol Phys 43:719–725

    Article  PubMed  CAS  Google Scholar 

  • Lauve AD, Siebers JV, Crimaldi AJ et al (2006) Dynamic compensation strategy to correct patient-positioning errors in conformal prostate radiotherapy. Med Phys 33:1879–1887

    Article  PubMed  CAS  Google Scholar 

  • Linthout N, Verellen D, Tournel K et al (2007) Assessment of secondary patient motion induced by automated couch movement during on-line 6 dimensional repositioning in prostate cancer treatment. Radiother Oncol 83:68–74

    Article  Google Scholar 

  • Livsey JE, Cowan RA, Wylie JP et al (2003) Hypofractionated conformal radiotherapy in carcinoma of the prostate: five-year outcome analysis. Int J Radiat Oncol Biol Phys 57:1254–1259

    Article  PubMed  Google Scholar 

  • Lloyd-Davies RW, Collins CD, Swan AV (1990) Carcinoma of the prostate treated by radical external beam radiotherapy using hypofractionation. Twenty-two years’ experience (1962–1984). Urology 36:107–111

    Article  PubMed  CAS  Google Scholar 

  • Lukka H, Hayter C, Julian JA et al (2005) Randomized trial comparing two fractionation schedules for patients with localized prostate cancer. J Clin Oncol 23:6132–6138

    Article  PubMed  Google Scholar 

  • Lyons JA, Kupelian PA, Mohan DS et al (2000) Importance of high radiation doses (72 Gy or greater) in the treatment of stage T1-T3 adenocarcinoma of the prostate. Urology 55:85–90

    Article  PubMed  CAS  Google Scholar 

  • Mackie TR, Kapatoes J, Ruchala K et al (2003) Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys 56:89–105

    Article  PubMed  Google Scholar 

  • Mahadevan A, Kupelian P, Reddy C et al (2005) Comparison of two fractionation schedules for conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 63:S291

    Article  Google Scholar 

  • Mangar SA, Sydes MR, Tucker HL et al (2006) Evaluating the relationship between erectile dysfunction and dose received by the penile bulb: using data from a randomised controlled trial of conformal radiotherapy in prostate cancer (MRC RT01, ISRCTN47772397). Radiother Oncol 80:355–362

    Article  PubMed  Google Scholar 

  • Merrick GS, Butler WM, Wallner KE et al (2005) Erectile function after prostate brachytherapy. Int J Radiat Oncol Biol Phys 62:437–447

    Article  PubMed  Google Scholar 

  • Miller DC, Sanda MG, Dumn RL et al (2005) Long-term outcomes among localized prostate cancer survivors: health-related quality-of-life changes after radical prostatectomy, external radiation, and brachytherapy. J Clin Oncol 23:2772–2780

    Article  PubMed  Google Scholar 

  • Partin AW, Kattan MW, Subong EN et al (1997) Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 277:1445–1451

    Article  PubMed  CAS  Google Scholar 

  • Peeters STH, Heemsbergen WD, Koper PCM et al (2006) Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24:1990–1996

    Article  PubMed  Google Scholar 

  • Pilepich MV, Winter K, Lawton CA et al (2005) Androgen suppression adjuvant to definitive radiotherapy in prostate ­carcinoma – long-term results of phase III RTOG 85–31. Int J Radiat Oncol Biol Phys 61:1285–1290

    Article  PubMed  CAS  Google Scholar 

  • Pollack A, Smith LG, von Eschenbach AC (2000) External beam radiotherapy dose response characteristics of 1127 men with prostate cancer treated in the PSA era. Int J Radiat Oncol Biol Phys 48:507–512

    Article  PubMed  CAS  Google Scholar 

  • Pollack A, Zagars GK, Starkschall G et al (2002) Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53:1097–1105

    Article  PubMed  Google Scholar 

  • Pollack A, Hanlon AL, Horwitz EM et al (2006) Dosimetry and preliminary acute toxicity in the first 100 men treated for prostate cancer on a randomized hypofractionation dose escalation trial. Int J Radiat Oncol Biol Phys 64:518–526

    Article  PubMed  Google Scholar 

  • Potosky AL, Davis WW, Hoffman RM et al (2004) Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J Natl Cancer Inst 96:1358–1367

    Article  PubMed  Google Scholar 

  • Pouliot J, Morin O, Aubin M et al (2006) Megavoltage cone-beam CT: recent developments and clinical applications. Cancer Radiothér 10:258–268

    Article  PubMed  CAS  Google Scholar 

  • Ritter MA, Chappell RJ, Tome WA et al (2005) A multi-institutional phase I/II trial of dose-per-fraction escalation for localized prostate cancer. Int J Radiat Oncol Biol Phys 63:S124

    Article  Google Scholar 

  • Roach M 3rd, DeSilvio M, Lawton C et al (2003) Phase III trial comparing whole-pelvic versus prostate-only radiotherapy versus adjuvant combined androgen suppression: radiation therapy oncology group 9413. J Clin Oncol 21:1904–1911

    Article  PubMed  Google Scholar 

  • Roach M 3rd, Hanks G, Thames H Jr et al (2006) Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65:965–974

    Article  PubMed  Google Scholar 

  • Shipley WU, Verhey LJ, Munzenrider JE et al (1995) Advanced prostate cancer - The results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using ­photons alone. Int J Radiat Oncol Biol Phys 32:3–12

    Article  PubMed  CAS  Google Scholar 

  • Soete G, Van de Steene J, Verellen D et al (2002a) Initial clinical experience with infrared-reflecting skin markers in the positioning of patients treated by conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 52:694–698

    Article  PubMed  Google Scholar 

  • Soete G, Verellen D, Michielsen D et al (2002b) Clinical use of stereoscopic X-ray positioning of patients treated with conformal radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 54:948–952

    Article  PubMed  Google Scholar 

  • Soete G, Arcangeli S, De Meerleer G et al (2006a) Phase II study of a four-week hypofractionated external beam radiotherapy regimen for prostate cancer: report on acute toxicity. Radiother Oncol 80:78–81

    Article  PubMed  Google Scholar 

  • Soete G, Verellen D, Tournel K et al (2006b) Setup accuracy of stereoscopic X-ray positioning with automated correction for rotational errors in patients treated with conformal arc radiotherapy for prostate cancer. Radiother Oncol 80:371–373

    Article  PubMed  Google Scholar 

  • Soete G, Verellen D, Michielsen D et al (2006c) Image-guided conformation arc therapy for prostate cancer: early side effects. Int J Radiat Oncol Biol Phys 66:S141–S144

    Article  Google Scholar 

  • Soete G, De Cock M, Verellen D et al (2007) X-ray assisted positioning of patients treated by conformal arc radiotherapy for prostate cancer: comparison of setup accuracy using implanted markers versus bony structures. Int J Radiat Oncol Biol Phys 67:823–827

    Article  PubMed  Google Scholar 

  • Song WY, Schaly B, Bauman G et al (2006) Evaluation of image-guided radiation therapy (IGRT) technologies and their impact on the outcomes of hypofractionated prostate cancer treatments: a radiobiologic analysis. Int J Radiat Oncol Biol Phys 64:289–300

    Article  PubMed  Google Scholar 

  • Talcott JA, Rieker P, Clark JA et al (1998) Patient-reported symptoms after primary therapy for early prostate cancer: results of a prospective cohort study. J Clin Oncol 16:275–283

    PubMed  CAS  Google Scholar 

  • Thames HD Jr, Withers HR, Peters LI et al (1982) Changes in early and late radiation responses with altered dose fractionation: implications for dose-survival relationships. Int J Radiat Oncol Biol Phys 8:219–226

    Article  PubMed  Google Scholar 

  • Tsuji H, Yanagi T, Ishikawa H et al (2005) Hypofractionated radiotherapy with carbon ion beams for prostate cancer. Int J Radiat Oncol Biol Phys 63:1153–1160

    Article  PubMed  Google Scholar 

  • van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135

    Article  PubMed  Google Scholar 

  • Verellen D, Linthout N, Soete G et al (2002) Considerations on treatment efficiency of different conformal radiation therapy techniques for prostate cancer. Radiother Oncol 63:27–36

    Article  PubMed  Google Scholar 

  • Verellen D, Soete G, Linthout N et al (2003) Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol 67:129–141

    Article  PubMed  Google Scholar 

  • van den Heuvel F, Powell T (2003) Independent verification of ultrasound based image-guided radiation treatment, using electronic portal imaging and implanted gold markers. Med Phys 30:2878–2887

    Article  PubMed  Google Scholar 

  • Wallner KE, Merrick GS, Benson ML et al (2002) Penile bulb imaging. Int J Radiat Oncol Biol Phys 53:928–933

    Article  PubMed  Google Scholar 

  • Wang JZ, Guerrero M, Li XA (2003) How low is the α/β ratio for prostate cancer? Int J Radiat Oncol Biol Phys 55:194–203

    Article  PubMed  Google Scholar 

  • Wang L, Hricak H, Kattan MW et al (2006) Prediction of organ-confined prostate cancer: incremental value of MR imaging and MR spectroscopic imaging to staging nomograms. Radiology 238:597–603

    Article  PubMed  Google Scholar 

  • Wernicke AG, Valicenti R, Dieva K et al (2004) Radiation dose delivered to the proximal penis as a predictor of the risk of erectile dysfunction after three-dimensional conformal radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 60:1357–1363

    Article  PubMed  Google Scholar 

  • Yeoh EE, Holloway RH, Fraser RJ et al (2006) Hypofractionated versus conventionally fractionated radiation therapy for prostate carcinoma: updated results of a phase III randomized trial. Int J Radiat Oncol Biol Phys 66:1072–1083

    Article  PubMed  Google Scholar 

  • Zapatero A, Garcia-Vicente F, Modolell I et al (2004) Impact of mean rectal dose on late rectal bleeding after conformal radiotherapy for prostate cancer: dose-volume effect. Int J Radiat Oncol Biol Phys 59:1343–1351

    Article  PubMed  Google Scholar 

  • Zelefsky MJ, Leibel SA, Gaudin PB et al (1998) Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer. Int J Radiat Oncol Biol Phys 41:491–500

    Article  PubMed  CAS  Google Scholar 

  • Zietman AL, DeSilvio ML, Slater JD et al (2005) Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294:1233–1239

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Soete .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soete, G. (2011). Prostate SBRT. In: De Salles, A., et al. Shaped Beam Radiosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11151-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11151-8_26

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11150-1

  • Online ISBN: 978-3-642-11151-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics