Skip to main content

Benign Spinal Tumors

  • Chapter
  • First Online:
Shaped Beam Radiosurgery
  • 835 Accesses

Abstract

Benign neoplasms account for approximately one third of all spinal tumors (Conti et al. 2004). Their frequency is increased in patients with neurofibromatosis Type 1 or 2. These lesions may be restricted to the thecal sac, the extra-thecal portions of the nerve sheath, or some combination of these locations (Celli et al. 2005). Benign spinal tumors typically present with a constellation of weakness, pain and/or sensory disturbance (Cherqui et al. 2007; Conti et al. 2004). Gross total resection is the standard of care for benign spinal tumors and complete removal rates are in excess of 95% in most neurosurgical experiences (Conti et al. 2004; Lot and Bernard 1997; Seppala et al. 1995a, b). Surgical cure, however, may require sacrifice of one or more nerve roots (Celli 2002; Celli et al. 2005; Kim et al. 1989; Safavi-Abbasi et al. 2008; Seppala et al. 1995a). Surgical intervention, moreover, may exacerbate underlying neurological symptoms or produce new, permanent deficits (Conti et al. 2004; Levy et al. 1986; Lot and Bernard 1997; Safavi-Abbasi et al. 2008; Seppala et al. 1995a, b). Subtotal tumor removal in an attempt to avoid neurological morbidity may result in tumor regrowth (Levy et al. 1986; Lot and Bernard 1997; Seppala et al. 1995b; Chang 1998). Stereotactic radiosurgery (SRS) has been demonstrated safe and effective for a variety of benign intracranial tumors. By extension, a similar radiotherapeutic approach should prove efficacious for spinal tumors of similar histology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agazaryan N, Tenn SE, DeSalles AAF et al (2008) Image-guided radiosurgery for spinal tumors: methods, accuracy and patient intrafraction motion. Phys Med Biol 53: 1715–1727

    Article  PubMed  Google Scholar 

  • Bijl HP, van Luijk P, Coppes RP et al (2002) Dose-volume effects in the rat cervical spinal cord after proton irradiation. Int J Radiat Oncol Biol Phys 52:205–211

    Article  PubMed  Google Scholar 

  • Bijl HP, van Luijk P, Coppes RP et al (2003) Unexpected changes of rat cervical spinal cord tolerance caused by inhomogeneous dose distributions. Int J Radiat Oncol Biol Phys 57:274–281

    Article  PubMed  Google Scholar 

  • Bijl HP, van Luijk P, Coppes RP et al (2005) Regional differences in radiosensitivity across the rat cervical spinal cord. Int J Radiat Oncol Biol Phys 61:543–551

    Article  PubMed  Google Scholar 

  • Blomgren H, Lax I, Naslund I et al (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Acta Onco 34:861–870

    Article  CAS  Google Scholar 

  • Celli P (2002) Treatment of relevant nerve roots in nerve sheath tumors: removal or preservation. Neurosurgery 51:684–692

    PubMed  Google Scholar 

  • Celli P, Trillo G, Ferrante L (2005) Extrathecal intraradicular nerve sheath tumor. J Neurosurg Spine 3:1–11

    Article  PubMed  Google Scholar 

  • Chang SD, Meisel JA, Hancock SL et al (1998) Treatment of hemangioblastomas in von Hippel-Lindau disease with linear accelerator-based radiosurgery. Neurosurgery 43:28–35

    Article  PubMed  CAS  Google Scholar 

  • Chang S, Main W, Martin D et al (2003) An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 52:140–147

    PubMed  Google Scholar 

  • Chang EL, Shiu AS, Mendel E et al (2007) Phase I/II study of stereotactic body radiotherapy for spinal metastasis and its pattern of failure. J Neurosurg Spine 7:151–160

    Article  PubMed  Google Scholar 

  • Cherqui A, Kim DH, Se-Hook K et al (2007) Surgical approaches to paraspinal nerve sheath tumors. Neurosurg Focus 22:1–10

    Article  Google Scholar 

  • Conti P, Pansini G, Mouchaty H et al (2004) Spinal neurinomas: retrospective analysis and long-term outcome of 179 consecutively operated cases and review of the literature. Neoplasm 61:35–44

    Google Scholar 

  • Cosgrove VP, Jahn U, Pfaender M et al (1999) Commissioning of a micro-multileaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336

    Article  PubMed  CAS  Google Scholar 

  • Dodd RL, Ryu MR, Kamnerdsupsphon P et al (2006) CyberKnife radiosurgery for benign intradural extramedullary spinal tumors. Neurosurgery 58:674–685

    Article  PubMed  Google Scholar 

  • Flickinger JC, Kondziolka D, Niranjan A et al (2001) Results of acoustic neuroma radiosurgery: an analysis of 5 years’ experience using current methods. J Neurosurg 94:1–6

    Article  PubMed  CAS  Google Scholar 

  • Franklin RJM, Gilson JM, Blakemore WF (1997) Local recruitment of remyelinating cells in the repair of demyelination in the central nervous system. J Neurosci Res 50:337–344

    Article  PubMed  CAS  Google Scholar 

  • Gerszten PC, Burton S, Ozhasoglu C et al (2008) Radiosurgery for benign intradural spinal tumors. Neurosurgery 62: 887–896

    Article  PubMed  Google Scholar 

  • Hamilton AJ, Lulu BA, Fosmire H et al (1995) Preliminary clinical experience with linear accelerator-based spinal stereo­tactic radiosurgery. Neurosurgery 36:311–319

    Article  PubMed  CAS  Google Scholar 

  • Hoogeman MS, Nuyttens JJ, Levendag PC et al (2008) Time dependence of intrafraction patient monitoring assessed by repeat stereoscopic imaging. Int J Radiat Oncol Biol Phys 70:609–618

    Article  PubMed  Google Scholar 

  • Hopewell JW, Morris AD, Dixon-Brown A (1987) The influence of field size on the late tolerance of the rat spinal cord to single doses of X-rays. Br J Radiol 60:1099–1108

    Article  PubMed  CAS  Google Scholar 

  • Jin JY, Ryu S, Faber K et al (2006) 2D/3D image fusion for accurate target localization and evaluation of a mask based system in fractionated stereotactic radiotherapy of cranial lesions. Med Phys 33:4557–4566

    Article  PubMed  Google Scholar 

  • Kim P, Ebersold MJ, Onofrio BM et al (1989) Surgery of spinal nerve Schwannoma. Risk of neurological deficit after resection of involved root. J Neurosurg 71:810–814

    Article  PubMed  CAS  Google Scholar 

  • Kollova A, Liscak R, Novotny J et al (2007) Gamma knife surgery for benign tumors. J Neurosurg 107:325–336

    Article  PubMed  Google Scholar 

  • Levy WJ, Latcharo J, Hahn JF et al (1986) Spinal neurofibroma: a report of 66 cases and a comparison with meningiomas. Neurosurgery 18:331–334

    Article  PubMed  CAS  Google Scholar 

  • Liscak R, Vladyka V, Urgosik D et al (1999) Acoustic neurinoma and its treatment using the Leksell γ-knife as a primary or secondary treatment. J Radiosurg 2:13–22

    Article  Google Scholar 

  • Lo YC, McBride WH, Withers HR (1991) The effect of single doses of radiation on mouse spinal cord. Int J Radiat Oncol Biol Phys 22:57–63

    Article  Google Scholar 

  • Lohr F, Debus J, Frank C et al (1999) Noninvasive patient fixation for extracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 45:521–527

    Article  PubMed  CAS  Google Scholar 

  • Lot G, Bernard G (1997) Cervical neuromas with extradural components: surgical management in a series of 57 patients. Neurosurgery 41:813–822

    Article  PubMed  CAS  Google Scholar 

  • McBeth Fr, Wheldon TE, Girling DJ et al (1996) Radiation myelopathy: estimates of risk in 1048 patients in three randomized trials of palliative radiotherapy for non-small cell lung cancer. Clin Oncol 8:176–181

    Article  Google Scholar 

  • Niemela M, Lim YJ, Soderman M et al (1996) Gamma knife radiosurgery in 11 hemangioblastomas. J Neurosurg 85: 591–596

    Article  PubMed  CAS  Google Scholar 

  • Patrice SJ, Sneed PK, Flickinger JC et al (1996) Radiosurgery for hemangioblastoma: results of a multiinstitutional experience. Int J Radiat Oncol Biol Phys 35:493–499

    Article  PubMed  CAS  Google Scholar 

  • Pieters RS, Niemierko A, Fullerton BC et al (2006) Cauda equine tolerance to high-dose fractionated irradiation. Int J Radiat Oncol Biol Phys 64:251–257

    Article  PubMed  Google Scholar 

  • Rades D, Stalpers LJ, Hulshof MC et al (2005a) Effectiveness and toxicity of single-fraction radiotherapy with 1  ×  8 Gy for metastatic spinal cord compression. Radiother Oncol 75: 70–73

    Article  PubMed  Google Scholar 

  • Rades D, Stalpers LJ, Veninga T et al (2005b) Evaluation of five radiation schedules and prognostic factors for metastatic spinal cord compression. J Clin Oncol 23:3366–3375

    Article  PubMed  Google Scholar 

  • Ryu S, Yin FF, Rock J et al (2003) Image-guided and intensity-modulated radiosurgery for patients with spinal metastases. Cancer 97:2013–2118

    Article  PubMed  Google Scholar 

  • Ryu S, Jin JY, Jin R et al (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636

    Article  PubMed  Google Scholar 

  • Safavi-Abbasi S, Senoglu M, Theodore N et al (2008) Microsurgical management of spinal schwannomas: evaluation of 128 cases. J Neurosurg Spine 9:40–47

    Article  PubMed  Google Scholar 

  • Seppala MT, Haltia MJJ, Sankila RJ et al (1995a) Long-term outcome after removal of spinal neurofibromas. J Neurosurg 82:572–577

    Article  PubMed  CAS  Google Scholar 

  • Seppala MT, Haltia MJJ, Sankila RJ et al (1995b) Long-term outcome after removal of spinal Schwannomas: a clinicopathologic study of 187 cases. J Neurosurg 83:621–626

    Article  PubMed  CAS  Google Scholar 

  • Tago M, Terahara A, Shin M et al (2005) Gamma knife surgery for hemangioblastomas. J Neurosurg 102(suppl):171–174

    Article  PubMed  Google Scholar 

  • Takacs II, Hamilton AJ, Lulu BA et al (1999) Frame based stereotactic spinal radiosurgery: experience from the first 19 patients treated. Stereotact Funct Neurosurg 73:69

    Article  PubMed  Google Scholar 

  • Teh BS, Paulino AC, Lu HH et al (2007) Versatility of the Novalis system to deliver image-guided stereotactic body radiation therapy (SBRT) for various anatomical sites. Technol Cancer Res Treat 6:347–354

    PubMed  Google Scholar 

  • Wang EM, Pan L, Wang BJ et al (2005) The long-term results of gamma knife radiosurgery for hemangioblastomas of the brain. J Neurosurg 102(Suppl):225–229

    Article  PubMed  Google Scholar 

  • Wang H, Shiu A, Wang C et al (2008) Dosimetric effect of translational and rotational errors for patients undergoing image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiat Oncol Biol Phys 71:1261–1271

    Article  PubMed  Google Scholar 

  • Yan H, Yin FF, Kim JH (2003) A phantom study on the positioning accuracy of the Novalis Body system. Med Phys 30: 3052–3060

    Article  PubMed  Google Scholar 

  • Yin FF, Ryu S, Ajlouni M et al (2002a) A technique of intensity-modulated radiosurgery (IMRS) for spinal tumors. Med Phys 29:2815–2822

    Article  PubMed  Google Scholar 

  • Yin FF, Zhu J, Yan H et al (2002b) Dosimetric characteristics of Novalis shaped beam surgery unit. Med Phys 29: 1729–1764

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Selch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Selch, M. (2011). Benign Spinal Tumors. In: De Salles, A., et al. Shaped Beam Radiosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11151-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11151-8_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11150-1

  • Online ISBN: 978-3-642-11151-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics