Skip to main content

Non-linear phenomena in continua

  • Chapter

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 50))

Abstract

These lectures will consist of a sequence of problems, mainly from the theories of large elastic deformation and viscoelastic flow. In these theories, properties of materials are described by equations that are not linear. They are usually so badly nonlinear that it is just as well to regard the functions that appear in them as almost arbitrary.

The prospect of a non-linear problem is frightening because the standard methods based on superposition are inapplicable. The fright is psychological; no one solves linear problems either, by pencil and paper, unless the problem has a great deal of symmetry. The use of symmetry is usually not acknowledged. It is regarded as cheating.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Green, A. E., and W. Zerna: Theoretical Elasticity. Oxford: Clarendon Press, 1954.

    MATH  Google Scholar 

  2. Green, A. E., and J. E. Adkins: Large Elastic Deformations and Non-Linear Continuum Mechanics. Oxford: Clarendon Press, I960,

    MATH  Google Scholar 

  3. Truesdell, C, and W. Noll: The Nonlinear Field Theories of Mechanics. Encyclopedia of Physics III/3. New York: Springer-Verlag, 1965.

    Google Scholar 

  4. Jaunzemis, W.: Continuum Mechanics. New York: MacMillan, 1967.

    MATH  Google Scholar 

  5. Treloar, L. R. G.: The Physics of Rubber Elasticity. Second Edition. Oxford: Clarendon Press, 1967.

    Google Scholar 

  6. Jones, T. E. R., and K. Walters: A Theory for the Balance Rheometer. Brit. J. Appl. Phys. (J. Phys. D) 2, 815 (1969).

    Google Scholar 

  7. Yin, W.-L., and A. C. Pipkin: Kinematics of Viscometric Flow. ARMA (Forthcoming).

    Google Scholar 

  8. Yin, W.-L.: Ph.D. thesis, Brown University, Division of Applied Mathematics, 1969. University Microfilms, Ann Arbor, Michigan.

    Google Scholar 

  9. Pipkin, A. C: Controllable Viscometric Flows. Quart. Appl. Math. 26, 87 (1968).

    MathSciNet  MATH  Google Scholar 

  10. Giesekus, H.: Some Secondary Flow Phenomena in General Viscoelastic Fluids. Proc. Fourth Int. Cong, on Rheology, Part 1, 249 (1965).

    Google Scholar 

  11. Griffiths, D. F., D. T. Jones, and K. Walters: A Flow Reversal Due to Edge Effects. J. Fluid Mech. 36, l6l (1969).

    Article  Google Scholar 

  12. Barnes, H. A., and K. Walters: Dynamic Similarity and Drag Reduction in Flow of Elastic Liquids through Curved Pipes. Nature 219, 57 (1968).

    Article  Google Scholar 

  13. Osaki, K., M. Tamura, M. Kurata, and T. Kotaka: Complex Modulus of Concentrated Polymer Solutions in Steady Shear. J. Phys. Chem. 69, 4183 (1965).

    Article  Google Scholar 

  14. Booij, H. C: Influence of Superimposed Steady Shear Flow on the Dynamic Properties of Non-Newtonian Fluids. Rheo-logica Acta 5, 215 (1966).

    Article  Google Scholar 

  15. MacDonald, I. F., and R. B. Bird: Complex Modulus of Concentrated Polymer Solutions in Steady Shear. J. Phys. Chem. 70, 2068 (1966).

    Article  Google Scholar 

  16. Simmons, J. M.: Dynamic Modulus of Polyisobutylene Solutions in Superposed Steady Shear Flow. Rheologica Acta 7, 184 (1968).

    Article  Google Scholar 

  17. Tanner, R. I., and J. M. Simmons: Combined Simple and Sinusoidal Shearing in Elastic Liquids. Chem. Eng. Sci. 22, 1803 (1967).

    Article  Google Scholar 

  18. Pipkin, A. C. and D. R. Owen: Nearly Viscometric Flows. Phys. Fluids 10, 836 (1967).

    Article  Google Scholar 

  19. Pipkin, A. C: Small Displacements Superposed on Viscometric Flow. Trans. Soc. Rheology 12, 397 (1968).

    Article  Google Scholar 

  20. Tanner, R. I.: Plane Creeping Flows of Incompressible Second-order Fluids. Phys. Fluids 9, 1246 (1966).

    Article  Google Scholar 

  21. Tanner, R. I., and A. C. Pipkin: Intrinsic Errors in Pressure-Hole Measurements. Trans. Soc. Rheology. Forthcoming.

    Google Scholar 

  22. Broadbent, J. M., A. Kaye, A. S. Lodge, and D. G. Vale: Possible Systemátic Error in the Measurement of Normal Stress Differences in Polymer Solutions in Steady Shear Flow. Nature 217, 55 (1968).

    Article  Google Scholar 

  23. Giesekus, H.: Die Rheologische Zustandsgleichung elasto-viskoser Flüssigkeiten - insbesondere von Weissenberg-Flüssigkeiten - für allgemeine und stationäre Fliessvorgänge. ZAMM 42, 32 (1962).

    Article  MATH  Google Scholar 

  24. Huilgol, R.: On the Properties of the Motion with Constant Stretch History Occurring in the Maxwell Rheometer. Math. Res. Center, U. of Wisc, Madison (1969).

    Google Scholar 

  25. Maxwell, B., and R. P. Chartoff: Studies of a Polymer Melt in an Orthogonal Rheometer. Trans. Soc. Rheology 9., 4l (1965).

    Article  Google Scholar 

  26. Ballman, R. L.: Extensional Flow of Polystyrene Melt. Rheologica Acta 4, 137 (1965).

    Article  Google Scholar 

  27. Metzner, A. R., E. A. Uebler, and C. F. Chan Man Fong: Converging Flows of Viscoelastic Fluids. U. of Delaware, Newark (1968).

    Google Scholar 

  28. Petroski, H. J., and D. E. Carlson: Controllable States of Rigid Heat Conductors. ZAMP 19, 372 (1968).

    Article  Google Scholar 

  29. Laws, N.: Controllable States in Thermoelasticity.

    Google Scholar 

  30. Carroll, M. M.: Controllable Deformations of Incompressible Simple Materials. I.J.E.S. 5., 515 (1967).

    Google Scholar 

  31. Carroll, M. M.: Finite Deformations of Incompressible Simple Solids. I. Isotropic Solids. II. Transversely Isotropic Solids. Quart. J. Mech. and Appl. Math. 21, 147–170, 269–278 (1968).

    Article  MATH  Google Scholar 

  32. Wineman, A. S.: Motions Possible in Every Incompressible Isotropic Simple Solid and Fluid. Dep't Eng. Mech., U. of Mich., Ann Arbor (1967).

    Google Scholar 

  33. Carroll, M. M.: Finite Bending,Stretching, and Shearing of a Block of Orthotropic, Incompressible Simple Solid. J. Appl. Mech.

    Google Scholar 

  34. Petroski, H. J., and D. E. Carlson: Contròllable States of Elastic Heat Conductors. ARMA 31, 127 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  35. Singh, M., and A. C. Pipkin: Controllable States of Elastic Dielectrics. ARMA 21, 169 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  36. Kearsley, E.: Intrinsic Errors for Pressure Measurements in a Slot Along a Flow. National Bureau of Standards, Washington, D. C. (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R.S. Rivlin (Coordinatore)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pipkin, A.C. (2010). Non-linear phenomena in continua. In: Rivlin, R. (eds) Non-linear Continuum Theories in Mechanics and Physics and their Applications. C.I.M.E. Summer Schools, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11090-0_3

Download citation

Publish with us

Policies and ethics