Skip to main content

Weak Topology and Calculus of Variations

  • Chapter
  • 1544 Accesses

Part of the book series: C.I.M.E. Summer Schools ((CIME,volume 39))

Abstract

1. Introduction. It might be said that the use of weak compactness in the calculus of variations is implicitly contained in the classical method of proving existence theorems by selecting weakly convergent subsequences. In recent years the use of weak topology in the calculus of variations has become a good deal more explicit and systematic. It is based on the following facts:

I. In any topological space E a real valued function f defined on a compact subset A takes a (absolute) minimum in some point of A if it is lower semi-continuous, and also a maximum if it is continuous.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. T. Ando, On gradient mappings in Banach spaces, Proc. Amer. Math. Soc. 12(1961), 297–299.

    MathSciNet  Google Scholar 

  2. N. Bourbaki, Eléments de mathématique, livre V, Espaces vecto-riels topologiques, Paris, Hermann and Co., 1953.

    Google Scholar 

  3. F.E. Browder, Variational methods for nonlinear elliptic eigenvalue problems. Bull. Am. Math. Soc. 71(1965), 176é183.

    Article  MathSciNet  MATH  Google Scholar 

  4. F.E. Browder, Remarks on the direct methods of the calculus of variations, Archive for Rational Mechanics and Analysis, 20(1965), 251–258.

    Article  MathSciNet  MATH  Google Scholar 

  5. N. Dunford and J. T. Schwartz, Linear operators Part I, General theory, Interscience Publishers, New York, 1958.

    Google Scholar 

  6. G. Fichera, Semicontinuity of multiple integrals in ordinary form, Archive for Rational Mechanics and Analysis, 17(1964), 339–352.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Gil de Lamadrid, On finite dimensional approximations of mappings in Banach spaces, Proc. Am. Math. Soc. 13(1962), 163–168.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Leray and J. Schauder, Topologie et équations fonctionnelles, An-nales Scientifiques de l'Ecole normale supérieure (3), 51(1934), 45–78.

    MathSciNet  MATH  Google Scholar 

  9. E. H. Rothe, Gradient mappings and extrema in Banach spaces, Duke Math. J., 15(1948), 421–431.

    Article  MathSciNet  MATH  Google Scholar 

  10. A note on the Banach spaces of Calkin and Morrey, Pacific J. Math., 3(1953), 493é499.

    Google Scholar 

  11. An existence theorem in the calculus of variations based on Sobolev's imbedding theorems, Archive for Rational Mechanics and Analysis 21(1966), 151–162.

    Google Scholar 

  12. V.I. Smirnov, A course of higher mathematics, vol. V, Pergamon Press, 1964 (translated from the Russian edition of 1960).

    Google Scholar 

  13. S.L. Sobolev, Applications of functional analysis in mathematical physics, Amer. Math. Soc. 1963 (translated from the Russian edition of 1950).

    Google Scholar 

  14. C. de la Valine Poussin, Intégrales de Lebesgue, fonctions d'ensemble, classes de Baire, Paris, Gauthiers-Villars, 1916.

    Google Scholar 

  15. M. M. Vainberg, Variational methods for the study of non-linear operators, Holden-Day, 1964(translated from the Russian edition of 1956). The University of Michigan Ann Arbor, Michigan

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R Conti (Coordinatore)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rothe, E.H. (2010). Weak Topology and Calculus of Variations. In: Conti, R. (eds) Calculus of Variations, Classical and Modern. C.I.M.E. Summer Schools, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11042-9_6

Download citation

Publish with us

Policies and ethics