Skip to main content

Adversarial Multiple Access Channel with Individual Injection Rates

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5923))

Abstract

We study deterministic distributed broadcasting on a synchronous multiple-access channel. Packets are injected into stations by a window-type adversary that is constrained by an individual injection rate of each station and a window w. We investigate what queue sizes and packet latency can be achieved with the maximum throughput of one packet per round. A protocol knows the number n of all the stations but does not know the window nor the individual rates of stations. We study the power of full sensing and acknowledgment based protocols as compared to general adaptive ones. We show that individual injection rates make it possible to achieve bounded packet latency by full sensing protocols, what is in contrast with the model of global injection rates for which stability and finite waiting times are not achievable together by general protocols. We show that packet latency is \(\Omega\bigl(w\,\frac{\log n}{\log w}\bigr)\) when w ≤ n and it is Ω(w) when w > n. We give a full sensing protocol for channels with collision detection and an adaptive one for channels without collision detection that achieve \({\mathcal O}({\rm min}(n+w,w\log n))\) packet latency. We develop a full sensing protocol for a channel without collision detection that achieves \({\mathcal O}(n+w)\) queues and \({\mathcal O}(nw)\) packet latency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, N.: Development of the Alohanet. IEEE Transactions on Information Theory 31, 119–123 (1985)

    Article  MATH  Google Scholar 

  2. Álvarez, C., Blesa, M.J., Díaz, J., Serna, M.J., Fernández, A.: Adversarial models for priority-based networks. Networks 45, 23–35 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Álvarez, C., Blesa, M.J., Serna, M.J.: The impact of failure management on the stability of communication networks. In: Proceeding of the 10th International Conference on Parallel and Distributed Systems (ICPADS), pp. 153–160 (2004)

    Google Scholar 

  4. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., Liu, Z., Kleinberg, J.: Universal-stability results and performance bounds for greedy contention-resolution protocols. Journal of the ACM 48, 39–69 (2001)

    Article  MathSciNet  Google Scholar 

  5. Andrews, M., Zhang, L.: Achieving stability in networks of input-queued switches. IEEE/ACM Transactions on Networking 11, 848–857 (2003)

    Article  Google Scholar 

  6. Andrews, M., Zhang, L.: Routing and scheduling in multihop wireless networks with time-varying channels. ACM Transactions on Algorithms 3(3), article 33 (2007)

    Google Scholar 

  7. Andrews, M., Zhang, L.: Stability results for networks with input and output blocking. In: Proceedings of the 30th ACM Symposium on the Theory of Computing (STOC), pp. 369–377 (1998)

    Google Scholar 

  8. Awerbuch, B., Richa, A., Scheideler, C.: A jamming-resistant MAC protocol for single-hop wireless networks. In: Proceedings of the 27th Symposium on Principles of Distributed Computing (PODC), pp. 45–54 (2008)

    Google Scholar 

  9. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for simple channels. In: Proceedings of the 17th ACM Symposium on Parallel Algorithms (SPAA), pp. 325–332 (2005)

    Google Scholar 

  10. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory. Journal of the ACM 48, 13–38 (2001)

    Article  MathSciNet  Google Scholar 

  11. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-access channel. In: Proceedings of the 25th ACM Symposium on Principles of Distributed Computing (PODC), pp. 92–101 (2006)

    Google Scholar 

  12. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple access channels in adversarial environments. Distributed Computing 22, 93–116 (2009)

    Article  Google Scholar 

  13. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.C.: The wireless synchronization problem. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing (PODC), pp. 190–199 (2009)

    Google Scholar 

  14. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.C.: Gossiping in a multi-channel radio network. In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Gallager, R.G.: A perspective on multiaccess channels. IEEE Transactions on Information Theory 31, 124–142 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gilbert, S., Guerraoui, R., Kowalski, D.R., Newport, C.: Interference-resilient information exchange. In: Proceedings of the 28th IEEE International Conference on Computer Communications (INFOCOM), pp. 2249–2257 (2009)

    Google Scholar 

  17. Gilbert, S., Guerraoui, R., Newport, C.C.: Of malicious motes and suspicious sensors: On the efficiency of malicious interference in wireless networks. Theoretical Computer Science 410, 546–569 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldberg, L.A., Jerrum, M., Kannan, S., Paterson, M.: A bound on the capacity of backoff and acknowledgement-based protocols. SIAM Journal on Computing 33, 313–331 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldberg, L.A., MacKenzie, P., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. Journal of the ACM 47, 1048–1096 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. Journal of the ACM 32, 589–596 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Håstad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for multiple access channels. SIAM Journal on Computing 25, 740–774 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  22. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local computer networks. Communications of the ACM 19, 395–404 (1976)

    Article  Google Scholar 

  23. Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM Journal on Computing 28, 709–719 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Anantharamu, L., Chlebus, B.S., Rokicki, M.A. (2009). Adversarial Multiple Access Channel with Individual Injection Rates. In: Abdelzaher, T., Raynal, M., Santoro, N. (eds) Principles of Distributed Systems. OPODIS 2009. Lecture Notes in Computer Science, vol 5923. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10877-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10877-8_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10876-1

  • Online ISBN: 978-3-642-10877-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics