Skip to main content

Single Photon Emission Computed Tomography Tracer

  • Chapter
  • First Online:

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 187))

Abstract

Single photon emission computed tomography (SPECT) is the state-of-the-art imaging modality in nuclear medicine despite the fact that only a few new SPECT tracers have become available in the past 20 years. Critical for the future success of SPECT is the design of new and specific tracers for the detection, localization, and staging of a disease and for monitoring therapy. The utility of SPECT imaging to address oncologic questions is dependent on radiotracers that ideally exhibit excellent tissue penetration, high affinity to the tumor-associated target structure, specific uptake and retention in the malignant lesions, and rapid clearance from non-targeted tissues and organs. In general, a target-specific SPECT radiopharmaceutical can be divided into two main parts: a targeting biomolecule (e.g. peptide, antibody fragment) and a γ-radiation emitting radionuclide (e.g. 99mTc, 123I). If radiometals are used as the radiation source, a bifunctional chelator is needed to link the radioisotope to the targeting entity. In a rational SPECT tracer design these single components have to be critically evaluated in order to achieve a balance among the demands for adequate target binding, and a rapid clearance of the radiotracer. The focus of this chapter is to depict recent developments of tumor-targeted SPECT radiotracers for imaging of cancer diseases. Possibilities for optimization of tracer design and potential causes for design failure are discussed and highlighted with selected examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrams MJ, Juweid M et al (1990) Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats. J Nucl Med 31:2022–2028

    PubMed  CAS  Google Scholar 

  • Alberto R, Ortner K et al (2001) Synthesis and properties of boranocarbonate: a convenient in situ CO source for the aqueous preparation of [99mTc(OH2)3(CO)3]+. J Am Chem Soc 123:3135–3136

    PubMed  CAS  Google Scholar 

  • Alberto R, Schibli R et al (1998) A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc 120:7987–7988

    CAS  Google Scholar 

  • Alberto R, Schibli R et al (1999a) First application of fac-[99mTc(OH2)3(CO)3]+ in bioorganometallic chemistry: Design, structure, and in vitro affinity of a 5-HT1A receptor ligand labeled with 99mTc. J Am Chem Soc 121:6076–6077

    CAS  Google Scholar 

  • Alberto R, Schibli R et al (1999b) Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M = Re, Tc) directed towards radiopharmaceutical application. Coord Chem Rev 192:901–919

    Google Scholar 

  • Alford R, Ogawa M et al (2009) Molecular probes for the in vivo imaging of cancer. Mol BioSyst 5:1279–1291

    PubMed  CAS  Google Scholar 

  • Alshoukr F, Rosant C et al (2009) Novel neurotensin analogues for radioisotope targeting to neurotensin receptor-positive tumors. Bioconjug Chem 20:1602–1610

    PubMed  CAS  Google Scholar 

  • Alves S, Correia JD et al (2006) Pyrazolyl conjugates of bombesin: a new tridentate ligand framework for the stabilization of fac-[M(CO)3]+ moiety. Nucl Med Biol 33:625–634

    PubMed  CAS  Google Scholar 

  • Antony AC (1996) Folate receptors. Ann Rev Nutr 16:501–521

    CAS  Google Scholar 

  • Baidoo KE, Lin KS et al (1998) Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjug Chem 9:218–225

    PubMed  CAS  Google Scholar 

  • Bartholoma MD, Louie AS et al (2010) Technetium and gallium derived radiopharmaceuticals: comparing and contrasting the chemistry of two important radiometals for the molecular imaging era. Chem Rev 110:2903–2920

    PubMed  CAS  Google Scholar 

  • Bauer JA, Morrison BH et al (2002) Effects of interferon beta on transcobalamin II-receptor expression and antitumor activity of nitrosylcobalamin. J Natl Cancer Inst 94:1010–1019

    PubMed  CAS  Google Scholar 

  • Bayly SR, Fisher CL et al (2004) Carbohydrate conjugates for molecular imaging and radiotherapy: 99mTc(I) and 186Re(I) tricarbonyl complexes of N-(2′-hydroxybenzyl)-2-amino-2-deoxy-d-glucose. B. Bioconjug Chem 15:923–926

    PubMed  CAS  Google Scholar 

  • Begent RH, Verhaar MJ et al (1996) Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat Med 2:979–984

    PubMed  CAS  Google Scholar 

  • Behr TM, Becker WS et al (1996) Reduction of renal uptake of monoclonal antibody fragments by amino acid infusion. J Nucl Med 37:829–833

    PubMed  CAS  Google Scholar 

  • Behr TM, Gotthardt M et al (2001) Imaging tumors with peptide-based radioligands. Q J Nucl Med 45:189–200

    PubMed  CAS  Google Scholar 

  • Behr TM, Sharkey RM et al (1995) Reduction of the renal uptake of radiolabeled monoclonal antibody fragments by cationic amino acids and their derivatives. Cancer Res 55:3825–3834

    PubMed  CAS  Google Scholar 

  • Bernard BF, Krenning EP et al (1997) d-lysine reduction of indium-111 octreotide and yttrium-90 octreotide renal uptake. J Nucl Med 38:1929–1933

    PubMed  CAS  Google Scholar 

  • Birchler MT, Thuerl C et al (2007) Immunoscintigraphy of patients with head and neck carcinomas, with an anti-angiogenetic antibody fragment. Otolaryngol Head Neck Surg 136:543–548

    PubMed  Google Scholar 

  • Blomquist L, Flodh H et al (1969) Uptake of labelled vitamin B12 and 4-iodophenylalanine in some tumors of mice. Experientia 25:294–296

    PubMed  CAS  Google Scholar 

  • Boeggeman E, Ramakrishnan B et al (2009) Site specific conjugation of fluoroprobes to the remodeled Fc N-glycans of monoclonal antibodies using mutant glycosyltransferases: application for cell surface antigen detection. Bioconjug Chem 20:1228–1236

    PubMed  CAS  Google Scholar 

  • Brack SS, Dinkelborg LM et al (2004) Molecular targeting of angiogenesis for imaging and therapy. Eur J Nucl Med Mol Imaging 31:1327–1341

    PubMed  Google Scholar 

  • Breeman WA, de Jong M et al (2002) Preclinical comparison of 111In-labeled DTPA- or DOTA-bombesin analogs for receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 43:1650–1656

    PubMed  CAS  Google Scholar 

  • Brekken RA, Huang X et al (1998) Vascular endothelial growth factor as a marker of tumor endothelium. Cancer Res 58:1952–1959

    PubMed  CAS  Google Scholar 

  • Bruehlmeier M, Garayoa EG et al (2002) Stabilization of neurotensin analogues: effect on peptide catabolism, biodistribution and tumor binding. Nucl Med Biol 29:321–327

    PubMed  CAS  Google Scholar 

  • Buchmann I, Vogg AT et al (2003) [18F]5-fluoro-2-deoxyuridine-PET for imaging of malignant tumors and for measuring tissue proliferation. Cancer Biother Radiopharm 18:327–337

    PubMed  CAS  Google Scholar 

  • Buchsbaum DJ (1995) Experimental approaches to increase radiolabeled antibody localization in tumors. Cancer Res 55:5729s–5732s

    PubMed  CAS  Google Scholar 

  • Buchsbaum DJ (1997) Experimental tumor targeting with radiolabeled ligands. Cancer 80:2371–2377

    PubMed  CAS  Google Scholar 

  • Carnemolla B, Neri D et al (1996) Phage antibodies with pan-species recognition of the oncofoetal angiogenesis marker fibronectin ED-B domain. Int J Cancer 68:397–405

    PubMed  CAS  Google Scholar 

  • Celen S, de Groot T et al (2007) Synthesis and evaluation of a 99mTc-MAMA-propyl-thymidine complex as a potential probe for in vivo visualization of tumor cell proliferation with SPECT. Nucl Med Biol 34:283–291

    PubMed  CAS  Google Scholar 

  • Cescato R, Erchegyi J et al (2008) Design and in vitro characterization of highly sst2-selective somatostatin antagonists suitable for radiotargeting. J Med Chem 51:4030–4037

    PubMed  CAS  Google Scholar 

  • Cescato R, Schulz S et al (2006) Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J Nucl Med 47:502–511

    PubMed  CAS  Google Scholar 

  • Christ E, Wild D et al (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94:4398–4405

    PubMed  CAS  Google Scholar 

  • Collins DA, Hogenkamp HP (1997) Transcobalamin II receptor imaging via radiolabeled diethylene-triaminepentaacetate cobalamin analogs. J Nucl Med 38:717–723

    PubMed  CAS  Google Scholar 

  • Collins DA, Hogenkamp HP et al (1999) Tumor imaging via indium-111-labeled DTPA-adenosylcobalamin. Mayo Clin Proc 74:687–691

    PubMed  CAS  Google Scholar 

  • Collins DA, Hogenkamp HP et al (2000) Biodistribution of radiolabeled adenosylcobalamin in patients diagnosed with various malignancies. Mayo Clin Proc 75:568–580

    PubMed  CAS  Google Scholar 

  • de Jong M, Bakker WH et al (1999) Preclinical and initial clinical evaluation of 111In-labeled nonsulfated CCK8 analog: a peptide for CCK-B receptor-targeted scintigraphy and radionuclide therapy. J Nucl Med 40:2081–2087

    PubMed  Google Scholar 

  • de Jong M, Rolleman EJ et al (1996) Inhibition of renal uptake of indium-111-DTPA-octreotide in vivo. J Nucl Med 37:1388–1392

    PubMed  Google Scholar 

  • de Visser M, Bernard HF et al (2007) Novel 111In-labelled bombesin analogues for molecular imaging of prostate tumours. Eur J Nucl Med Mol Imaging 34:1228–1238

    PubMed  Google Scholar 

  • de Visser M, Janssen PJ et al (2003) Stabilised 111In-labelled DTPA- and DOTA-conjugated neurotensin analogues for imaging and therapy of exocrine pancreatic cancer. Eur J Nucl Med Mol Imaging 30:1134–1139

    PubMed  Google Scholar 

  • Decristoforo C, Mather SJ (2002) The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med 46:195–205

    PubMed  CAS  Google Scholar 

  • Decristoforo C, Mather SJ et al (2000a) 99mTc-EDDA/HYNIC-TOC: a new 99mTc-labelled radiopharmaceutical for imaging somatostatin receptor-positive tumours; first clinical results and intra-patient comparison with 111In-labelled octreotide derivatives. Eur J Nucl Med 27:1318–1325

    PubMed  CAS  Google Scholar 

  • Decristoforo C, Melendez-Alafort L et al (2000b) 99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41:1114–1119

    PubMed  CAS  Google Scholar 

  • Delgado R, da Silva JJ (1982) Metal complexes of cyclic tetra-azatetra-acetic acids. Talanta 29:815–822

    PubMed  CAS  Google Scholar 

  • Demartis S, Tarli L et al (2001) Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin. Eur J Nucl Med 28:534–539

    PubMed  CAS  Google Scholar 

  • Desbouis D, Struthers H et al (2008) Synthesis, in vitro, and in silico evaluation of organometallic technetium and rhenium thymidine complexes with retained substrate activity toward human thymidine kinase type 1. J Med Chem 51:6689–6698

    PubMed  CAS  Google Scholar 

  • Dumas C, Schibli R et al (2003) Versatile routes to C-2- and C-6-functionalized glucose derivatives of iminodiacetic acid. J Org Chem 68:512–518

    PubMed  CAS  Google Scholar 

  • Dupertuis YM, Vazquez M et al (2001) Fluorodeoxyuridine improves imaging of human glioblastoma xenografts with radiolabeled iododeoxyuridine. Cancer Res 61:7971–7977

    PubMed  CAS  Google Scholar 

  • Dupertuis YM, Xiao WH et al (2002) Unlabelled iododeoxyuridine increases the rate of uptake of [125I]iododeoxyuridine in human xenografted glioblastomas. Eur J Nucl Med Mol Imaging 29:499–505

    PubMed  CAS  Google Scholar 

  • Edwards DS, Liu S et al (1997) New and versatile ternary ligand system for technetium radiopharmaceuticals: water soluble phosphines and tricine as coligands in labeling a hydrazinonicotinamide-modified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjug Chem 8:146–154

    PubMed  CAS  Google Scholar 

  • Egli A, Alberto R et al (1999) Organometallic 99mTc-aquation labels peptide to an unprecedented high specific activity. J Nucl Med 40:1913–1917

    PubMed  CAS  Google Scholar 

  • Egli A, Hegetschweiler K et al (1997) Hydrolysis of the organometallic aqua ion fac-triaquatricarbonylrhenium(I). Mechanism, pKa, and formation constants of the polynuclear hydrolysis products. Organometallics 16:1833–1840

    CAS  Google Scholar 

  • Ferreira CL, Bayly SR et al (2006a) Carbohydrate-appended 3-hydroxy-4-pyridinone complexes of the [M(CO)3]+ core (M = Re, 99mTc, 186Re). Bioconjug Chem 17:1321–1329

    PubMed  CAS  Google Scholar 

  • Ferreira CL, Ewart CB et al (2006b) Glucosamine conjugates of tricarbonylcyclopentadienyl rhenium(I) and technetium(I) cores. Inorg Chem 45:6979–6987

    PubMed  CAS  Google Scholar 

  • Ferreira CL, Marques FL et al (2010) Cationic technetium and rhenium complexes with pendant carbohydrates. Appl Radiat Isot 68:1087–1093

    PubMed  CAS  Google Scholar 

  • Ferro-Flores G, Arteaga de Murphy C et al (2006) Preparation and evaluation of 99mTc-EDDA/HYNIC-[Lys3]-bombesin for imaging gastrin-releasing peptide receptor-positive tumours. Nucl Med Commun 27:371–376

    PubMed  CAS  Google Scholar 

  • Fisher RE, Siegel BA et al (2008) Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors. J Nucl Med 49:899–906

    PubMed  Google Scholar 

  • Flodh H (1968) Autoradiographic studies on distribution of radiocobalt chloride in pregnant mice. Acta Radiol Ther Phys Biol 7:121–128

    PubMed  CAS  Google Scholar 

  • Flodh H, Ullberg S (1968) Accumulation of labelled vitamin B12 in some transplanted tumours. Int J Cancer 3:694–699

    PubMed  CAS  Google Scholar 

  • Garcia-Garayoa E, Blauenstein P et al (2009) A stable neurotensin-based radiopharmaceutical for targeted imaging and therapy of neurotensin receptor-positive tumours. Eur J Nucl Med Mol Imaging 36:37–47

    PubMed  CAS  Google Scholar 

  • Garcia-Garayoa E, Maes V et al (2006) Double-stabilized neurotensin analogues as potential radiopharmaceuticals for NTR-positive tumors. Nucl Med Biol 33:495–503

    PubMed  CAS  Google Scholar 

  • Garcia Garayoa E, Ruegg D et al (2007a) Chemical and biological characterization of new Re(CO)3/[99mTc](CO)3 bombesin analogues. Nucl Med Biol 34:17–28

    PubMed  CAS  Google Scholar 

  • Garcia Garayoa E, Schweinsberg C et al (2008) Influence of the molecular charge on the biodistribution of bombesin analogues labeled with the [99mTc(CO)3]-core. Bioconjug Chem 19:2409–2416

    PubMed  CAS  Google Scholar 

  • Garcia Garayoa E, Schweinsberg C et al (2007b) New [99mTc]bombesin analogues with improved biodistribution for targeting gastrin releasing-peptide receptor-positive tumors. Q J Nucl Med Mol Imaging 51:42–50

    PubMed  CAS  Google Scholar 

  • Gardelle O, Roelcke U et al (2001) [76Br]Bromodeoxyuridine PET in tumor-bearing animals. Nucl Med Biol 28:51–57

    PubMed  CAS  Google Scholar 

  • Gati WP, Misra HK et al (1984) Structural modifications at the 2′- and 3′-positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter. Biochem Pharmacol 33:3325–3331

    PubMed  CAS  Google Scholar 

  • Giblin MF, Veerendra B et al (2005) Radiometallation of receptor-specific peptides for diagnosis and treatment of human cancer. In Vivo 19:9–29

    PubMed  CAS  Google Scholar 

  • Ginj M, Zhang H et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci U S A 103:16436–16441

    PubMed  CAS  Google Scholar 

  • Goldenberg DM, Rossi EA et al (2008) Multifunctional antibodies by the Dock-and-Lock method for improved cancer imaging and therapy by pretargeting. J Nucl Med 49:158–163

    PubMed  CAS  Google Scholar 

  • Good S, Walter MA et al (2008) Macrocyclic chelator-coupled gastrin-based radiopharmaceuticals for targeting of gastrin receptor-expressing tumours. Eur J Nucl Med Mol Imaging 35:1868–1877

    PubMed  CAS  Google Scholar 

  • Gotthardt M, van Eerd-Vismale J et al (2007) Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med 48:596–601

    PubMed  CAS  Google Scholar 

  • Gugger M, Reubi JC (1999) Gastrin-releasing peptide receptors in non-neoplastic and neoplastic human breast. Am J Pathol 155:2067–2076

    PubMed  CAS  Google Scholar 

  • Guo W, Hinkle GH et al (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40:1563–1569

    PubMed  CAS  Google Scholar 

  • Hammond PJ, Wade AF et al (1993) Amino acid infusion blocks renal tubular uptake of an indium-labelled somatostatin analogue. Br J Cancer 67:1437–1439

    PubMed  CAS  Google Scholar 

  • Heppeler A, Froidevaux S et al (1999) Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem-Eur J 5:1974–1981

    CAS  Google Scholar 

  • Hoefnagel CA, den Hartog Jager FC et al (1987) The role of 131I-MIBG in the diagnosis and therapy of carcinoids. Eur J Nucl Med 13:187–191

    PubMed  CAS  Google Scholar 

  • Hoffman TJ, Gali H et al (2003) Novel series of 111In-labeled bombesin analogs as potential radiopharmaceuticals for specific targeting of gastrin-releasing peptide receptors expressed on human prostate cancer cells. J Nucl Med 44:823–831

    PubMed  CAS  Google Scholar 

  • Hong H, Sun J et al (2008) Radionuclide-based cancer imaging targeting the carcinoembryonic antigen. Biomark Insights 3:435–451

    PubMed  CAS  Google Scholar 

  • Johnson CV, Shelton T et al (2006) Evaluation of combined 177Lu-DOTA-8-AOC-BBN (7-14)NH2 GRP receptor-targeted radiotherapy and chemotherapy in PC-3 human prostate tumor cell xenografted SCID mice. Cancer Biother Radiopharm 21:155–166

    PubMed  CAS  Google Scholar 

  • Josten A, Haalck L et al (2000) Use of microbial transglutaminase for the enzymatic biotinylation of antibodies. J Immunol Methods 240:47–54

    PubMed  CAS  Google Scholar 

  • Kastner ME, Lindsay MJ et al (1982) Synthesis and structure of trans-[O2(en)2Tcv]+. Inorg Chem 21:2037–2040

    CAS  Google Scholar 

  • Ke CY, Mathias CJ et al (2003) The folate receptor as a molecular target for tumor-selective radionuclide delivery. Nucl Med Biol 30:811–817

    PubMed  CAS  Google Scholar 

  • Ke CY, Mathias CJ et al (2004) Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 56:1143–1160

    PubMed  CAS  Google Scholar 

  • Khan MU, Morse M et al (2008) Radioiodinated metaiodobenzylguanidine in the diagnosis and therapy of carcinoid tumors. Q J Nucl Med Mol Imaging 52:441–454

    PubMed  CAS  Google Scholar 

  • King DJ, Turner A et al (1994) Improved tumor targeting with chemically cross-linked recombinant antibody fragments. Cancer Res 54:6176–6185

    PubMed  CAS  Google Scholar 

  • Kobayashi H, Sakahara H et al (1994) Improved clearance of radiolabeled biotinylated monoclonal antibody following the infusion of avidin as a “chase” without decreased accumulation in the target tumor. J Nucl Med 35:1677–1684

    PubMed  CAS  Google Scholar 

  • Körner M, Stockli M et al (2007) GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting. J Nucl Med 48:736–743

    PubMed  Google Scholar 

  • Kwekkeboom D, Krenning EP et al (2000) Peptide receptor imaging and therapy. J Nucl Med 41:1704–1713

    PubMed  CAS  Google Scholar 

  • La Bella R, Garcia-Garayoa E et al (2002) A 99mTc(I)-postlabeled high affinity bombesin analogue as a potential tumor imaging agent. Bioconjug Chem 13:599–604

    PubMed  Google Scholar 

  • Lantry LE, Cappelletti E et al (2006) 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J Nucl Med 47:1144–1152

    PubMed  CAS  Google Scholar 

  • Leamon CP, Parker MA et al (2002) Synthesis and biological evaluation of EC20: a new folate- derived, 99mTc-based radiopharmaceutical. Bioconjug Chem 13:1200–1210

    PubMed  CAS  Google Scholar 

  • Lei K, Rusckowski M et al (1996) Technetium-99m antibodies labeled with MAG3 and SHNH: an in vitro and animal in vivo comparison. Nucl Med Biol 23:917–922

    PubMed  CAS  Google Scholar 

  • Leyton JV, Olafsen T et al (2008) Humanized radioiodinated minibody for imaging of prostate stem cell antigen-expressing tumors. Clin Cancer Res 14:7488–7496

    PubMed  CAS  Google Scholar 

  • Li M, Meares CF et al (1995) Prelabeling of chimeric monoclonal antibody L6 with 90yttrium- and 111indium-1,4,7,10-tetraazacyclododecane-N,N’,N”,N”‘-tetraacetic acid (DOTA) chelates for radioimmunodiagnosis and therapy. Cancer Res 55:5726s–5728s

    PubMed  CAS  Google Scholar 

  • Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60:1347–1370

    PubMed  CAS  Google Scholar 

  • Liu S (2009) Radiolabeled cyclic RGD peptides as integrin alpha(v)beta(3)-targeted radiotracers: maximizing binding affinity via bivalency. Bioconjug Chem 20:2199–2213

    PubMed  CAS  Google Scholar 

  • Liu S, Edwards DS (1999) 99mTc-Labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99:2235–2268

    PubMed  CAS  Google Scholar 

  • Liu S, Edwards DS et al (1998) A novel ternary ligand system for 99mTc-labeling of hydrazino nicotinamide-modified biologically active molecules using imine-N-containing heterocycles as coligands. Bioconjug Chem 9:583–595

    PubMed  CAS  Google Scholar 

  • Liu S, Kim YS et al (2008) Coligand effects on the solution stability, biodistribution and metabolism of the 99mTc-labeled cyclic RGDfK tetramer. Nucl Med Biol 35:111–121

    PubMed  CAS  Google Scholar 

  • Liu Z, Li ZB et al (2009a) Small-animal PET of tumors with 64Cu-labeled RGD-bombesin heterodimer. J Nucl Med 50:1168–1177

    PubMed  CAS  Google Scholar 

  • Liu Z, Niu G et al (2009b) 68Ga-labeled NOTA-RGD-BBN peptide for dual integrin and GRPR-targeted tumor imaging. Eur J Nucl Med Mol Imaging 36:1483–1494

    PubMed  CAS  Google Scholar 

  • Low PS, Henne WA et al (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41:120–129

    PubMed  CAS  Google Scholar 

  • Maddalena ME, Fox J et al (2009) 177Lu-AMBA biodistribution, radiotherapeutic efficacy, imaging, and autoradiography in prostate cancer models with low GRP-R expression. J Nucl Med 50:2017–2024

    PubMed  Google Scholar 

  • Maes V, Garcia-Garayoa E et al (2006) Novel 99mTc-labeled neurotensin analogues with optimized biodistribution properties. J Med Chem 49:1833–1836

    PubMed  CAS  Google Scholar 

  • Maina T, Nikolopoulou A et al (2007) [99mTc]Demotensin 5 and 6 in the NTS1-R-targeted imaging of tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging 34:1804–1814

    PubMed  CAS  Google Scholar 

  • Maina T, Nock B et al (2002) [99mTc]Demotate, a new 99mTc-based [Tyr3]octreotate analogue for the detection of somatostatin receptor-positive tumours: synthesis and preclinical results. Eur J Nucl Med Mol Imaging 29:742–753

    PubMed  CAS  Google Scholar 

  • Mansi R, Wang X et al (2009) Evaluation of a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-conjugated bombesin-based radioantagonist for the labeling with single-photon emission computed tomography, positron emission tomography, and therapeutic radionuclides. Clin Cancer Res 15:5240–5249

    PubMed  CAS  Google Scholar 

  • Mardirossian G, Wu C et al (1993) The stability in liver homogenates of indium-111 and yttrium-90 attached to antibody via two popular chelators. Nucl Med Biol 20:65–74

    PubMed  CAS  Google Scholar 

  • Maresca KP, Hillier SM et al (2009) Comprehensive radiolabeling, stability, and tissue distribution studies of technetium-99m single amino acid chelates (SAAC). Bioconjug Chem 20:1625–1633

    PubMed  CAS  Google Scholar 

  • Markwalder R, Reubi JC (1999) Gastrin-releasing peptide receptors in the human prostate: relation to neoplastic transformation. Cancer Res 59:1152–1159

    PubMed  CAS  Google Scholar 

  • Mathias CJ, Wang S et al (1998) Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 39:1579–1585

    PubMed  CAS  Google Scholar 

  • Mercer JR, Xu LH et al (1989) Synthesis and tumor uptake of 5-82Br- and 5-131I-labeled 5-halo-1-(2-fluoro-2-deoxy-beta-D-ribofuranosyl)uracils. J Med Chem 32:1289–1294

    PubMed  CAS  Google Scholar 

  • Mindt TL, Jungi V et al (2008) Modification of different IgG1 antibodies via glutamine and lysine using bacterial and human tissue transglutaminase. Bioconjug Chem 19:271–278

    PubMed  CAS  Google Scholar 

  • Minko T, Paranjpe PV et al (2002) Enhancing the anticancer efficacy of camptothecin using biotinylated poly (ethylene glycol) conjugates in sensitive and multidrug-resistant human ovarian carcinoma cells. Cancer Chemother Pharmacol 50:143–150

    PubMed  CAS  Google Scholar 

  • Moody TW, Russell EK et al (1983) Bombesin-like peptides in small cell lung cancer: biochemical characterization and secretion from a cell line. Life Sci 32:487–493

    PubMed  CAS  Google Scholar 

  • Müller C, Brühlmeier M et al (2006a) Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in vivo. J Nucl Med 47:2057–2064

    PubMed  Google Scholar 

  • Müller C, Mindt TL et al (2009) Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy. Eur J Nucl Med Mol Imaging 36:938–946

    PubMed  Google Scholar 

  • Müller C, Reddy JA et al (2010) Effects of the antifolates pemetrexed and CB3717 on the tissue distribution of 99mTc-EC20 in xenografted and syngeneic tumor-bearing mice. Mol Pharm 7:597–604

    PubMed  Google Scholar 

  • Müller C, Schibli R et al (2008) Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J Nucl Med 49:623–629

    PubMed  Google Scholar 

  • Müller C, Schubiger PA et al (2006b) Synthesis and in vitro/in vivo evaluation of novel 99mTc(CO)3-folates. Bioconjug Chem 17:797–806

    PubMed  Google Scholar 

  • Müller C, Schubiger PA et al (2007) Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol 34:595–601

    PubMed  Google Scholar 

  • Munch-Petersen B, Cloos L et al (1995) Human thymidine kinase 1. Regulation in normal and malignant cells. Adv Enzyme Regul 35:69–89

    PubMed  CAS  Google Scholar 

  • Neri D, Carnemolla B et al (1997) Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol 15:1271–1275

    PubMed  CAS  Google Scholar 

  • Nock B, Nikolopoulou A et al (2003) [99mTc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30:247–258

    PubMed  CAS  Google Scholar 

  • Nock BA, Nikolopoulou A et al (2005) Potent bombesin-like peptides for GRP-receptor targeting of tumors with 99mTc: a preclinical study. J Med Chem 48:100–110

    PubMed  CAS  Google Scholar 

  • Nock BA, Nikolopoulou A et al (2006) Toward stable N4-modified neurotensins for NTS1-receptor-targeted tumor imaging with 99mTc. J Med Chem 49:4767–4776

    PubMed  CAS  Google Scholar 

  • Oh P, Li Y et al (2004) Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissue-specific therapy. Nature 429:629–635

    PubMed  CAS  Google Scholar 

  • Ozker K, Collier BD et al (1999) Biodistribution of 99mTc-labelled 5-thio-d-glucose. Nucl Med Commun 20:1055–1058

    PubMed  CAS  Google Scholar 

  • Parker N, Turk MJ et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338:284–293

    PubMed  CAS  Google Scholar 

  • Petrig J, Schibli R et al (2001) Derivatization of glucose and 2-deoxyglucose for transition metal complexation: substitution reactions with organometallic 99mTc and Re precursors and fundamental NMR investigations. Chemistry 7:1868–1873

    PubMed  CAS  Google Scholar 

  • Pini A, Viti F et al (1998) Design and use of a phage display library. Human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J Biol Chem 273:21769–21776

    PubMed  CAS  Google Scholar 

  • Posey JA, Khazaeli MB et al (2001) A pilot trial of Vitaxin, a humanized anti-vitronectin receptor (anti alpha v beta 3) antibody in patients with metastatic cancer. Cancer Biother Radiopharm 16:125–132

    PubMed  CAS  Google Scholar 

  • Purohit A, Liu S et al (2003) Phosphine-containing HYNIC derivatives as potential bifunctional chelators for 99mTc-labeling of small biomolecules. Bioconjug Chem 14:720–727

    PubMed  CAS  Google Scholar 

  • Reddy JA, Xu LC et al (2004) Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 45:857–866

    PubMed  CAS  Google Scholar 

  • Reubi JC, Waser B et al (1998) Neurotensin receptors: a new marker for human ductal pancreatic adenocarcinoma. Gut 42:546–550

    PubMed  CAS  Google Scholar 

  • Risch VR, Honda T et al (1977) Distribution of 99mTc-1-thioglucose in rats: effect of administration route on pancreatic specificity. Radiology 124:837–838

    PubMed  CAS  Google Scholar 

  • Rolleman EJ, Valkema R et al (2003) Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 30:9–15

    PubMed  CAS  Google Scholar 

  • Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38:209–222

    PubMed  Google Scholar 

  • Russell-Jones G, McTavish K et al (2004) Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J Inorg Biochem 98:1625–1633

    PubMed  CAS  Google Scholar 

  • Salmaso S, Pappalardo JS et al (2009) Targeting glioma cells in vitro with ascorbate-conjugated pharmaceutical nanocarriers. Bioconjug Chem 20:2348–2355

    PubMed  CAS  Google Scholar 

  • Salouti M, Rajabi H et al (2008) Breast tumor targeting with 99mTc-HYNIC-PR81 complex as a new biologic radiopharmaceutical. Nucl Med Biol 35:763–768

    PubMed  CAS  Google Scholar 

  • Santimaria M, Moscatelli G et al (2003) Immunoscintigraphic detection of the ED-B domain of fibronectin, a marker of angiogenesis, in patients with cancer. Clin Cancer Res 9:571–579

    PubMed  CAS  Google Scholar 

  • Schibli R, Dumas C et al (2005) Synthesis and in vitro characterization of organometallic rhenium and technetium glucose complexes against Glut 1 and hexokinase. Bioconjug Chem 16:105–112

    PubMed  CAS  Google Scholar 

  • Schibli R, La Bella R et al (2000) Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem 11:345–351

    PubMed  CAS  Google Scholar 

  • Schibli R, Schubiger PA (2002) Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 29:1529–1542

    PubMed  CAS  Google Scholar 

  • Schibli R, Schwarzbach R et al (2002) Steps toward high specific activity labeling of biomolecules for therapeutic application: preparation of precursor [188Re(H2O)3(CO)3]+ and synthesis of tailor-made bifunctional ligand systems. Bioconjug Chem 13:750–756

    PubMed  CAS  Google Scholar 

  • Schmid M, Neumaier B et al (2006) Synthesis and evaluation of a radiometal-labeled macrocyclic chelator-derivatised thymidine analog. Nucl Med Biol 33:359–366

    PubMed  CAS  Google Scholar 

  • Schottelius M, Laufer B et al (2009) Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res 42:969–980

    PubMed  CAS  Google Scholar 

  • Schottelius M, Wester HJ (2009) Molecular imaging targeting peptide receptors. Methods 48:161–177

    PubMed  CAS  Google Scholar 

  • Schottelius M, Wester HJ et al (2002) Improvement of pharmacokinetics of radioiodinated Tyr3-octreotide by conjugation with carbohydrates. Bioconjug Chem 13:1021–1030

    PubMed  CAS  Google Scholar 

  • Schwartz DA, Abrams MJ et al (1991) Preparation of hydrazino-modified proteins and their use for the synthesis of 99mTc-protein conjugates. Bioconjug Chem 2:333–336

    PubMed  CAS  Google Scholar 

  • Schweinsberg C, Maes V et al (2008) Novel glycated [99mTc(CO)3]-labeled bombesin analogues for improved targeting of gastrin-releasing peptide receptor-positive tumors. Bioconjug Chem 19:2432–2439

    PubMed  CAS  Google Scholar 

  • Seetharam B (1999) Receptor-mediated endocytosis of cobalamin (vitamin B12). Annu Rev Nutr 19:173–195

    PubMed  CAS  Google Scholar 

  • Seetharam B, Li N (2000) Transcobalamin II and its cell surface receptor. Vitam Horm 59:337–366

    PubMed  CAS  Google Scholar 

  • Seetharam B, Yammani RR (2003) Cobalamin transport proteins and their cell-surface receptors. Expert Rev Mol Med 5:1–18

    PubMed  Google Scholar 

  • Semnani ES, Wang K et al (2005) 5-[123I/125I]iodo-2′-deoxyuridine in metastatic lung cancer: radiopharmaceutical formulation affects targeting. J Nucl Med 46:800–806

    PubMed  CAS  Google Scholar 

  • Shi J, Kim YS et al (2009) Improving tumor uptake and pharmacokinetics of 64Cu-labeled cyclic RGD peptide dimers with Gly(3) and PEG(4) linkers. Bioconjug Chem 20:750–759

    PubMed  CAS  Google Scholar 

  • Shi J, Wang L et al (2008) Improving tumor uptake and excretion kinetics of 99mTc-labeled cyclic arginine-glycine-aspartic (RGD) dimers with triglycine linkers. J Med Chem 51:7980–7990

    PubMed  CAS  Google Scholar 

  • Siegel BA, Dehdashti F et al (2003) Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 44:700–707

    PubMed  CAS  Google Scholar 

  • Smith CJ, Gali H et al (2003a) Radiochemical investigations of 177Lu-DOTA-8-Aoc-BBN[7-14]NH2: an in vitro/in vivo assessment of the targeting ability of this new radiopharmaceutical for PC-3 human prostate cancer cells. Nucl Med Biol 30:101–109

    PubMed  CAS  Google Scholar 

  • Smith CJ, Sieckman GL et al (2003b) Radiochemical investigations of gastrin-releasing peptide receptor-specific [99mTc(X)(CO)3-Dpr-Ser-Ser–Ser-Gln-Trp-Ala-Val-Gly-His-Leu-Met-(NH2)] in PC-3, tumor-bearing, rodent models: syntheses, radiolabeling, and in vitro/in vivo studies where Dpr = 2,3-diaminopropionic acid and X = H2O or P(CH2OH)3. Ca. Cancer Res 63:4082–4088

    PubMed  CAS  Google Scholar 

  • Smith CJ, Sieckman GL et al (2003c) Radiochemical investigations of [188Re(H2O)(CO)3-diaminopropionic acid-SSS-bombesin(7-14)NH2]: syntheses, radiolabeling and in vitro/in vivo GRP receptor targeting studies. Anticancer Res 23:63–70

    PubMed  CAS  Google Scholar 

  • Smith CJ, Volkert WA et al (2003d) Gastrin releasing peptide (GRP) receptor targeted radiopharmaceuticals: a concise update. Nucl Med Biol 30:861–868

    PubMed  CAS  Google Scholar 

  • Smith CJ, Volkert WA et al (2005) Radiolabeled peptide conjugates for targeting of the bombesin receptor superfamily subtypes. Nucl Med Biol 32:733–740

    PubMed  CAS  Google Scholar 

  • Sosabowski JK, Matzow T et al (2009) Targeting of CCK-2 receptor-expressing tumors using a radiolabeled divalent gastrin peptide. J Nucl Med 50:2082–2089

    PubMed  CAS  Google Scholar 

  • Spanoudaki VC, Ziegler SI (2008) PET and SPECT instrumentation. Handb Exp Pharmacol 185:53–74

    PubMed  CAS  Google Scholar 

  • Steffens MG, Oosterwijk E et al (1999) In vivo and in vitro characterizations of three 99mTc-labeled monoclonal antibody G250 preparations. J Nucl Med 40:829–836

    PubMed  CAS  Google Scholar 

  • Storr T, Fisher CL et al (2005) A glucosamine-dipicolylamine conjugate of 99mTc(I) and 186Re(I) for use in imaging and therapy. Dalton Trans 21(4):654–655

    Google Scholar 

  • Struthers H, Hagenbach A et al (2009) Organometallic [Re(CO)3]+ and [Re(CO)2(NO)]2+ labeled substrates for human thymidine kinase 1. I. Inorg Chem 48:5154–5163

    PubMed  CAS  Google Scholar 

  • Struthers H, Spingler B et al (2008) “Click-to-chelate”: design and incorporation of triazole-containing metal-chelating systems into biomolecules of diagnostic and therapeutic interest. Chemistry 14:6173–6183

    PubMed  CAS  Google Scholar 

  • Tang Y, Scollard D et al (2005) Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. Nucl Med Commun 26:427–432

    PubMed  CAS  Google Scholar 

  • Tolmachev V, Friedman M et al (2009) Affibody molecules for epidermal growth factor receptor targeting in vivo: aspects of dimerization and labeling chemistry. J Nucl Med 50:274–283

    PubMed  Google Scholar 

  • Torizuka T, Tamaki N et al (1995) In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J Nucl Med 36:1811–1817

    PubMed  CAS  Google Scholar 

  • Toyohara J, Hayashi A et al (2003) Development of radioiodinated nucleoside analogs for imaging tissue proliferation: comparisons of six 5-iodonucleosides. Nucl Med Biol 30:687–696

    PubMed  CAS  Google Scholar 

  • Toyohara J, Hayashi A et al (2002) Rationale of 5-125I-iodo-4′-thio-2′-deoxyuridine as a potential iodinated proliferation marker. J Nucl Med 43:1218–1226

    PubMed  CAS  Google Scholar 

  • Van de Wiele C, Dumont F et al (2000) Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. Eur J Nucl Med 27:1694–1699

    PubMed  Google Scholar 

  • Verhaar-Langereis MJ, Zonnenberg BA et al (2000) Radioimmunodiagnosis and therapy. Cancer Treat Rev 26:3–10

    PubMed  CAS  Google Scholar 

  • Verwijnen SM, Krenning EP et al (2005) Oral versus intravenous administration of lysine: equal effectiveness in reduction of renal uptake of [111In-DTPA]octreotide. J Nucl Med 46:2057–2060

    PubMed  CAS  Google Scholar 

  • von Guggenberg E, Dietrich H et al (2007) 99mTc-labelled HYNIC-minigastrin with reduced kidney uptake for targeting of CCK-2 receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1209–1218

    Google Scholar 

  • Waibel R, Treichler H et al (2008) New derivatives of vitamin B12 show preferential targeting of tumors. Cancer Res 68:2904–2911

    PubMed  CAS  Google Scholar 

  • Wang L, Shi J et al (2009) Improving tumor-targeting capability and pharmacokinetics of 99mTc-labeled cyclic RGD dimers with PEG(4) linkers. Mol Pharm 6:231–245

    PubMed  CAS  Google Scholar 

  • Wang S, Luo J et al (1997) Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 8:673–679

    PubMed  CAS  Google Scholar 

  • Wängler C, Schirrmacher R et al (2009) Simple and convenient radiolabeling of proteins using a prelabeling-approach with thiol-DOTA. Bioorg Med Chem Lett 19:1926–1929

    PubMed  Google Scholar 

  • Weitman SD, Lark RH et al (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52:3396–3401

    PubMed  CAS  Google Scholar 

  • Wester HJ, Schottelius M et al (2002) Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics. Eur J Nucl Med Mol Imaging 29:28–38

    PubMed  CAS  Google Scholar 

  • Wieland DM, Wu J et al (1980) Radiolabeled adrenergi neuron-blocking agents: adrenomedullary imaging with [131I]iodobenzylguanidine. J Nucl Med 21:349–353

    PubMed  CAS  Google Scholar 

  • Wilbur DS, Hamlin DK et al (1996) Synthesis and nca-radioiodination of arylstannyl-cobalamin conjugates. Evaluation of aryliodo-cobalamin conjugate binding to transcobalamin II and biodistribution in mice. Bioconjug Chem 7:461–474

    PubMed  CAS  Google Scholar 

  • Xu N, Cai G et al (2009) Molecular imaging application of radioiodinated anti-EGFR human Fab to EGFR-overexpressing tumor xenografts. Anticancer Res 29:4005–4011

    PubMed  CAS  Google Scholar 

  • Yang W, Cheng Y et al (2009) Targeting cancer cells with biotin-dendrimer conjugates. Eur J Med Chem 44:862–868

    PubMed  CAS  Google Scholar 

  • Yim CB, Boerman OC et al (2009) Versatile conjugation of octreotide to dendrimers by cycloaddition (“click”) chemistry to yield high-affinity multivalent cyclic peptide dendrimers. Bioconjug Chem 20:1323–1331

    PubMed  CAS  Google Scholar 

  • Yokota T, Milenic DE et al (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 52:3402–3408

    PubMed  CAS  Google Scholar 

  • Yokota T, Milenic DE et al (1993) Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms. Cancer Res 53:3776–3783

    PubMed  CAS  Google Scholar 

  • Zardi L, Carnemolla B et al (1987) Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 6:2337–2342

    PubMed  CAS  Google Scholar 

  • Zhang H, Chen J et al (2004) Synthesis and evaluation of bombesin derivatives on the basis of pan-bombesin peptides labeled with indium-111, lutetium-177, and yttrium-90 for targeting bombesin receptor-expressing tumors. Cancer Res 64:6707–6715

    PubMed  CAS  Google Scholar 

  • Zwanziger D, Khan IU et al (2008) Novel chemically modified analogues of neuropeptide Y for tumor targeting. Bioconjug Chem 19:1430–1438

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. J. Fitzgerald for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, C., Schibli, R. (2013). Single Photon Emission Computed Tomography Tracer. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics