Skip to main content

Computational Neuroscience: Capturing the Essence

  • Chapter
  • First Online:
Neurosciences - From Molecule to Behavior: a university textbook

Abstract

The nervous system faces a most challenging task – to receive information from the outside world, process it, to change adaptively, and to generate an output – the appropriate behavior of the organism in a complex world. The research agenda of computational neuroscience (CN) is to use theoretical tools in order to understand how the different elements composing the nervous system: membrane ion channels, synapses, neurons, networks, and the systems they form, implement this demanding challenge successfully. CN deals with theoretical questions at both the cellular and subcellular levels, as well as at the networks, system, and behavioral levels. It focuses both on extracting basic biophysical principles (e.g., the rules governing the input-output relationship in single neurons) as well as on high-level rules governing the computational functions of a whole system, e.g., “How is a spot of light moving in the visual field encoded in the retina?” Or “how do networks of interconnected neurons represent and retain memories?” Ultimately, CN aims to understand, via mathematical theory, how do high-level phenomena such as cognition, emotions, creativity, and imagination, as well as brain disorders such as autism and schizophrenia, emerge from elementary brain-mechanisms. Here we highlight a few theoretical approaches used in CN and provide the respective fundamental insights that were gained. We start with biophysical models of single neurons and end with examples for models at the network level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott LF (2008) Theoretical neuroscience rising. Neuron 60:489–495

    Article  PubMed  CAS  Google Scholar 

  2. Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393:268–272

    Article  PubMed  CAS  Google Scholar 

  3. Agmon-Snir H, Segev I (1993) Signal delay and input synchronization in passive dendritic structures. J Neurophysiol 70:2066–2085

    PubMed  CAS  Google Scholar 

  4. Amit DJ (1992) Modeling brain function: the world of attractor neural networks. Cambridge University Press, Cambridge/New York

    Google Scholar 

  5. Amit DJ, Gutfreund H, Sompolinsky H (1985) Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys Rev Lett 55:1530–1533

    Article  PubMed  Google Scholar 

  6. Archie KA, Mel BW (2000) A model for intradendritic computation of binocular disparity. Nat Neurosci 3:54–63

    Article  PubMed  CAS  Google Scholar 

  7. Ascoli GA, Alonso-Nanclares L, Anderson SA et al. (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9:557–568

    Article  PubMed  CAS  Google Scholar 

  8. Branco T, Hausser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885–892

    Article  PubMed  CAS  Google Scholar 

  9. Briggman KL, Helmstaedter M, Denk W (2011) Wiring specificity in the direction-selectivity circuit of the retina. Nature 471:183–188

    Article  PubMed  CAS  Google Scholar 

  10. Chen BL, Hall DH, Chklovskii DB (2006) Wiring optimization can relate neuronal structure and function. Proc Natl Acad Sci USA 103:4723–4728

    Article  PubMed  CAS  Google Scholar 

  11. Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge

    Google Scholar 

  12. Dayan P, Daw ND (2008) Decision theory, reinforcement learning, and the brain. Cogn Affect Behav Neurosci 8:429–453

    Article  PubMed  Google Scholar 

  13. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, New York

    Google Scholar 

  14. Druckmann S, Banitt Y, Gidon A et al. (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1:7–18

    Article  PubMed  Google Scholar 

  15. Fusi S, Abbott L (2007) Limits on the memory storage capacity of bounded synapses. Nat Neurosci 10:485–493

    PubMed  CAS  Google Scholar 

  16. Gabbiani F, Krapp HG, Koch C, Laurent G (2002) Multiplicative computation in a visual neuron sensitive to looming. Nature 420:320–324

    Article  PubMed  CAS  Google Scholar 

  17. Gidon A, Segev I (2012) Principles governing the operation of synaptic inhibition in dendrites. Neuron 75:330–341

    Article  PubMed  CAS  Google Scholar 

  18. Gutig R, Sompolinsky H (2006) The tempotron: a neuron that learns spike timing-based decisions. Nat Neurosci 9:420–428

    Article  PubMed  Google Scholar 

  19. Helmstaedter M, Sakmann B, Feldmeyer D (2009) L2/3 interneuron groups defined by multiparameter analysis of axonal projection, dendritic geometry, and electrical excitability. Cereb Cortex 19:951–962

    Article  PubMed  Google Scholar 

  20. Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Westview Press, Boulder

    Google Scholar 

  21. Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci USA 79:2554–2558

    Article  PubMed  CAS  Google Scholar 

  22. Jack JJB, Noble D, Tsien RW (1975) Electric current flow in excitable cells. Clarendon, Oxford

    Google Scholar 

  23. Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57

    Article  PubMed  CAS  Google Scholar 

  24. Koch C, Poggio T, Torre V (1983) Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc Natl Acad Sci USA 80:2799–2802

    Article  PubMed  CAS  Google Scholar 

  25. Koch C, Rapp M, Segev I (1996) A brief history of time (constants). Cereb Cortex 6:93–101

    Article  PubMed  CAS  Google Scholar 

  26. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62

    Article  PubMed  CAS  Google Scholar 

  27. Loewenstein Y, Sompolinsky H (2003) Temporal integration by calcium dynamics in a model neuron. Nat Neurosci 6:961–967

    Article  PubMed  CAS  Google Scholar 

  28. Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441

    Article  PubMed  CAS  Google Scholar 

  29. Marder E, Taylor AL (2011) Multiple models to capture the variability in biological neurons and networks. Nat Neurosci 14:133–138

    Article  PubMed  CAS  Google Scholar 

  30. Markram H, Toledo-Rodriguez M, Wang Y et al (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  PubMed  CAS  Google Scholar 

  31. Meinertzhagen IA (2010) The organisation of invertebrate brains: cells, synapses and circuits. Acta Zoologica 91:64–71

    Article  Google Scholar 

  32. Nelson SB, Hempel C, Sugino K (2006) Probing the transcriptome of neuronal cell types. Curr Opin Neurobiol 16:571–576

    Article  PubMed  CAS  Google Scholar 

  33. Nicolelis MAL (2001) Actions from thoughts. Nature 409:403–407

    Article  PubMed  CAS  Google Scholar 

  34. Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352

    Article  PubMed  CAS  Google Scholar 

  35. Rall W (1959) Branching dendritic trees and motoneuron membrane resistivity. Exp Neurol 1:491–527

    Article  PubMed  CAS  Google Scholar 

  36. Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss RF (ed) Neural theory and modelling. Stanford University Press, Stanford, pp 73–97

    Google Scholar 

  37. Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168

    PubMed  CAS  Google Scholar 

  38. Rall W (1969) Time constants and electrotonic length of membrane cylinders and neurons. Biophys J 9:1483–1508

    Article  PubMed  CAS  Google Scholar 

  39. Rall W, Agmon-Snir H (1998) Cable theory for dendritic neurons. In: Koch C, Segev I (eds) Methods in neuronal modeling: from ions to networks. MIT Press, Cambridge, pp 27–92

    Google Scholar 

  40. Rall W, Rinzel J (1973) Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys J 13:648–687

    Article  PubMed  CAS  Google Scholar 

  41. Rieke F (1999) Spikes: exploring the neural code. MIT Press, Cambridge

    Google Scholar 

  42. Rosenblatt F (1958) The perceptron. Psychol Rev 65:386–408

    Article  PubMed  CAS  Google Scholar 

  43. Rucci M, Bullock D, Santini F (2007) Integrating robotics and neuroscience: brains for robots, bodies for brains. Adv Robot 21:1115–1129

    Article  Google Scholar 

  44. Segev I (1995) Dendritic processing. In: Arbib MA (ed) The handbook of brain theory and neuronal networks. MIT Press, Cambridge

    Google Scholar 

  45. Single S, Borst A (1998) Dendritic integration and its role in computing image velocity. Science 281:1848–1850

    Article  PubMed  CAS  Google Scholar 

  46. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42

    Article  PubMed  Google Scholar 

  47. Sterling P (2002) Neuroscience: how neurons compute direction. Nature 420:375–376

    Article  PubMed  CAS  Google Scholar 

  48. Walmsley B, Graham B, Nicol MJ (1995) Serial E-M and simulation study of presynaptic inhibition along a group Ia collateral in the spinal cord. J Neurophysiol 74:616–623

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Blue Brain Project and by the Gatsby Charitable Foundations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idan Segev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Druckmann, S., Gidon, A., Segev, I. (2013). Computational Neuroscience: Capturing the Essence. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_30

Download citation

Publish with us

Policies and ethics