Skip to main content

Ontogeny of the Vertebrate Nervous System

  • Chapter
  • First Online:
Neurosciences - From Molecule to Behavior: a university textbook

Abstract

The vertebrate Central Nervous System (CNS) originates from the embryonic dorsal ectoderm. Differentiation of the neural plate epithelium from the ectoderm constitutes the first phase of complex processes called gastrulation and neurulation, which culminates in the formation of the neural tube. During these processes, molecular and cellular mechanisms are orchestrated to specify the body and CNS axes. This is a required step to generate topological landmarks, from were positional information will be distributed by morphogenetic signals controlling cell differentiation and organogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtneckert R, Reichert H (2005) Insights into urbilaterian brain: conserved genetic patterning mechanisms in insect and vertebrate brain development. Heredity 94:465–477

    Article  PubMed  CAS  Google Scholar 

  2. Spemann H, Mangold H (2001) Induction of embryonic ­primordia by implantation of organizers from a different species. 1923. Int J Dev Biol 45:13–38

    PubMed  CAS  Google Scholar 

  3. Waddington CH (1936) Organizers in mammalian development. Nature 138:125

    Article  Google Scholar 

  4. Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132:2007–2021

    Article  PubMed  CAS  Google Scholar 

  5. Tanabe Y, Jessell TM (1996) Diversity and pattern in the developing spinal cord. Science 274:1115–1123

    Article  PubMed  CAS  Google Scholar 

  6. Chiang C, Litingtung Y, Lee E, Young KE, Corden JL, Westphal H, Beachy PA (1996) Cyclopia and defective axial patterning in mice lacking sonic hedgehog gene function. Nature 383:407–413

    Article  PubMed  CAS  Google Scholar 

  7. Shimamura K, Rubenstein JL (1997) Inductive interactions direct early regionalization of the mouse forebrain. Development 124:2709–2718

    PubMed  CAS  Google Scholar 

  8. Vieira C, Garcia-Lopez R, Martinez S (2006) Positional regulation of Pax2 expression pattern in mesencephalic and diencephalic alar plate. Neuroscience 137:7–11

    Article  PubMed  CAS  Google Scholar 

  9. Bouwmeester T, Kim S, Sasai Y, Lu B, De Robertis EM (1996) Cerberus is a head-inducing secreted factor expressed in the anterior endoderm of Spemann’s organizer. Nature 382:595–601

    Article  PubMed  CAS  Google Scholar 

  10. Qiu M, Shimamura K, Sussel L, Chen S, Rubenstein JL (1998) Control of anteroposterior and dorsoventral domains of Nkx-6.1 gene expression relative to other Nkx genes ­during vertebrate CNS development. Mech Dev 72:77–88

    Article  PubMed  CAS  Google Scholar 

  11. Puelles L, Rubenstein JL (2003) Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci 26:469–476

    Article  PubMed  CAS  Google Scholar 

  12. Miyashita-Lin EM, Hevner R, Wassarman KM, Martinez S, Rubenstein JL (1999) Early neocortical regionalization in the absence of thalamic innervation. Science 285:906–909

    Article  PubMed  CAS  Google Scholar 

  13. Holland LZ, Holland ND (1999) Chordate origins of the vertebrate central nervous system. Curr Opin Neurobiol 9:596–602

    Article  PubMed  CAS  Google Scholar 

  14. Martinez S, Crossley PH, Cobos I, Rubenstein JL, Martin GR (1999) FGF8 induces formation of an ectopic isthmic organizer and isthmocerebellar development via a repressive effect on Otx2 expression. Development 126:1189–1200

    PubMed  CAS  Google Scholar 

  15. Millet S, Campbell K, Epstein DJ, Losos K, Harris E, Joyner AL (1999) A role for Gbx2 in repression of Otx2 and positioning the mid/hindbrain organizer. Nature 401:161–164

    Article  PubMed  CAS  Google Scholar 

  16. Broccoli V, Boncinelli E, Wurst W (1999) The caudal limit of Otx2 expression positions the isthmic organizer. Nature 401:164–168

    Article  PubMed  CAS  Google Scholar 

  17. Reichert H (2005) A tripartite organization of the urbilaterian brain: developmental genetic evidence form Drosophila. Brain Res Bull 66:491–494

    Article  PubMed  Google Scholar 

  18. MacMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62:1073–1085

    Article  Google Scholar 

  19. Thomas KR, Capecchi MR (1990) Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 346:847–850

    Article  PubMed  CAS  Google Scholar 

  20. Martinez S, Wassef M, Alvarado-Mallart RM (1991) Induction of a mesencephalic phenotype in the 2-day-old chick prosencephalon is preceded by the early expression of the homeobox gene en. Neuron 6:971–981

    Article  PubMed  CAS  Google Scholar 

  21. Crossley PH, Martinez S, Martin GR (1996) Midbrain development induced by FGF8 in the chick embryo. Nature 380:66–68

    Article  PubMed  CAS  Google Scholar 

  22. Joyner AL (1996) Engrailed, Wnt and Pax genes regulate midbrain–hindbrain development. Trends Genet 12:15–20

    Article  PubMed  CAS  Google Scholar 

  23. Vieira C, Pombero A, Garcia-Lopez R, Gimeno L, Echevarria D, Martinez S (2010) Molecular mechanisms controlling brain development: an overview of neuroepithelial secondary organizers. Int J Dev Biol 54(1):7–20

    Article  PubMed  CAS  Google Scholar 

  24. Prakash N, Wurst W (2006) Genetic networks controlling the development of midbrain dopaminergic neurons. J Physiol 575:403–410

    Article  PubMed  CAS  Google Scholar 

  25. Houart C, Westerfield M, Wilson SW (1998) A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391:788–792

    Article  PubMed  CAS  Google Scholar 

  26. Boyan GS, Reichert H (2011) Mechanisms for complexity in the brain: generating the insect central complex. TINS 34:247–250

    PubMed  CAS  Google Scholar 

  27. Reichert H, Boyan G (1997) Building a brain: developmental insights in insects. Trends Neurosci 20:258–264

    Article  PubMed  CAS  Google Scholar 

  28. Lee PN, Callaerts P, de Couet HG, Martindale MK (2003) Cephalopod Hox code and the origin of morphological novelties. Nature 424:1061–1065

    Article  PubMed  CAS  Google Scholar 

  29. Hobert O (2010) Neurogenesis in the nematode Caenor­habditis elegans. WormBook 4:1–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martínez, S., Puelles, E., Echevarria, D. (2013). Ontogeny of the Vertebrate Nervous System. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_3

Download citation

Publish with us

Policies and ethics