Skip to main content

Experience-Dependent Plasticity in the Central Nervous System

  • Chapter
  • First Online:
  • 6430 Accesses

Abstract

Environmental influences play a key role in shaping the central nervous system architecture. The interaction of a living organism with the external environment is critical for the survival of the species diversity as it allows an individual to perceive and respond properly to changing environmental conditions. The capacity of the nervous system to change in response to environmental stimuli, referred to as plasticity, underlies experience-dependent modifications of brain functions. This feature is fundamental for neural circuitries to be sculpted by external signals and is of particular relevance in processes of learning and memory. How does sensory experience modify synaptic circuitries in the brain? This will be one of the topics we shall concentrate on along this chapter. The nervous system translates information from the external world through signals generated by the electrical activity associated to sensory inputs, and orchestrates adaptive responses to changing environmental conditions. This, in turn, depends upon adaptations of the brain that gathers and processes information to increase the probability of an individual to survive and reproduce. A bird and a bat, for instance, may share a given ecosystem but how perception of the environment occurs in these animals largely differs, as in the former the sense of vision predominates whereas in the latter it is a world of echolocation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Antonini A, Stryker MP (1993) Rapid remodeling of axonal arbors in the visual cortex. Science 260:1819–1821

    Article  PubMed  CAS  Google Scholar 

  2. Bavelier D, Neville HJ (2002) Cross-modal plasticity: where and how? Nat Rev Neurosci 3:443–452

    PubMed  CAS  Google Scholar 

  3. Berardi N, Pizzorusso T, Maffei L (2000) Critical periods during sensory development. Curr Opin Neurobiol 10:138–145

    Article  PubMed  CAS  Google Scholar 

  4. Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48

    PubMed  CAS  Google Scholar 

  5. Bischof HJ, Rollenhagen A (1999) Behavioural and neurophysiological aspects of sexual imprinting in zebra finches. Behav Brain Res 98:267–276

    Article  PubMed  CAS  Google Scholar 

  6. Cabelli RJ, Hohn A, Shatz CJ (1995) Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267:1662–1666

    Article  PubMed  CAS  Google Scholar 

  7. Caleo M, Maffei L (2002) Neurotrophins and plasticity in the visual cortex. Neuroscientist 8:52–61

    Article  PubMed  CAS  Google Scholar 

  8. Cancedda L, Putignano E, Sale A, Viegi A, Berardi N, Maffei L (2004) Acceleration of visual system development by environmental enrichment. J Neurosci 24:4840–4848

    Article  PubMed  CAS  Google Scholar 

  9. Chang EF, Merzenich MM (2003) Environmental noise retards auditory cortical development. Science 300:498–502

    Article  PubMed  CAS  Google Scholar 

  10. Constantine-Paton M, Law MI (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202:639–641

    Article  PubMed  CAS  Google Scholar 

  11. de Villers-Sidani E, Chang EF, Bao S et al. (2007) Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. J Neurosci 27:180–189

    Article  PubMed  Google Scholar 

  12. Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631

    Article  PubMed  CAS  Google Scholar 

  13. Du JL, Poo MM (2004) Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system. Nature 429:878–883

    Article  PubMed  CAS  Google Scholar 

  14. Fagiolini M, Pizzorusso T, Berardi N et al. (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Res 34:709–720

    Article  PubMed  CAS  Google Scholar 

  15. Feldman DE, Brecht M (2005) Map plasticity in somatosensory cortex. Science 310:810–815

    Article  PubMed  CAS  Google Scholar 

  16. Fox K (2002) Anatomical pathways and molecular mechanisms for plasticity in the barrel cortex. Neuroscience 111:799–814

    Article  PubMed  CAS  Google Scholar 

  17. Frenkel MY, Bear MF (2004) How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44:917–923

    Article  PubMed  CAS  Google Scholar 

  18. Galli L, Maffei L (1988) Spontaneous impulse activity of rat retinal ganglion cells in prenatal life. Science 242:90–91

    Article  PubMed  CAS  Google Scholar 

  19. Gianfranceschi L, Siciliano R, Walls J et al. (2003) Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc Natl Acad Sci USA 100:12486–12491

    Article  PubMed  CAS  Google Scholar 

  20. Harauzov A, Spolidoro M, DiCristo G et al. (2010) Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. J Neurosci 30:361–371

    Article  PubMed  CAS  Google Scholar 

  21. Hensch TK (2005) Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6:877–888

    Article  PubMed  CAS  Google Scholar 

  22. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10:647–658

    Article  PubMed  CAS  Google Scholar 

  23. Huang ZJ, Kirkwood A, Pizzorusso T et al. (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98:739–755

    Article  PubMed  CAS  Google Scholar 

  24. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274:1133–1138

    Article  PubMed  CAS  Google Scholar 

  25. Keating MJ, Grant S (1992) The critical period for experience-dependent plasticity in a system of binocular visual connections in Xenopus laevis: its temporal profile and relation to normal development requirements. Eur J Neurosci 4:27–36

    Article  PubMed  Google Scholar 

  26. Keuroghlian AS, Knudsen EI (2007) Adaptive auditory plasticity in developing and adult animals. Prog Neurobiol 82:109–121

    Article  PubMed  Google Scholar 

  27. King AJ, Parsons CH, Moore DR (2000) Plasticity in the neural coding of auditory space in the mammalian brain. Proc Natl Acad Sci USA 97:11821–11828

    Article  PubMed  CAS  Google Scholar 

  28. Kirkwood A, Lee HK, Baer MF (1995) Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature 375:328–331

    Article  PubMed  CAS  Google Scholar 

  29. Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328

    Article  PubMed  CAS  Google Scholar 

  30. Lazarini F, Lledo PM (2011) Is adult neurogenesis essential for olfaction. Trends Neurosci 34:20–30

    Article  PubMed  CAS  Google Scholar 

  31. LeVay S, Wiesel TN, Hubel DH (1980) The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol 191:1–51

    Article  PubMed  CAS  Google Scholar 

  32. Levelt CN, Hubener M (2012) Critical period plasticity in the visual cortex. Annu Rev Neurosci 35:309–330

    Article  PubMed  CAS  Google Scholar 

  33. Maya-Vetencourt JF, Sale A, Viegi A et al. (2008) The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320:385–388

    Article  PubMed  CAS  Google Scholar 

  34. Maya-Vetencourt JF, Tiraboschi E, Spolidoro M, Castrén E, Maffei L (2011) Serotonin triggers a transitory epigenetic mechanisms that promotes adult visual cortex plasticity. Eur J Neurosci 33:49–57

    Article  PubMed  Google Scholar 

  35. Maya-Vetencourt JF, Tiraboschi E, Greco D et al. (2012) Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex. J Physiol 590:4777–4787

    Google Scholar 

  36. McGee AW, Yang Y, Fischer QS, Daw NW, Strittmatter SM (2005) Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science 309:2222–2226

    Article  PubMed  CAS  Google Scholar 

  37. Moriceau S, Sullivan RM (2006) Maternal presence serves as a switch between learning fear and attraction in infancy. Nat Neurosci 9:1004–1006

    Article  PubMed  CAS  Google Scholar 

  38. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251

    Article  PubMed  CAS  Google Scholar 

  39. Polley DB, Steinberg EE, Merzenich MM (2006) Perceptual learning directs auditory cortical map reorganization through top-down influences. J Neurosci 26:4970–4982

    Article  PubMed  CAS  Google Scholar 

  40. Putignano E, Lonetti G, Cancedda L et al. (2007) Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron 53:747–759

    Article  PubMed  CAS  Google Scholar 

  41. Rai S, Rankin CH (2007) Critical and sensitive periods for reversing the effects of mechanosensory deprivation on behavior, nervous system, and development in Caenorhabditis elegans. Dev Neurobiol 67:1443–1456

    Article  PubMed  Google Scholar 

  42. Schratt GM, Tuebing F, Nigh EA et al. (2006) A brain specific microRNA regulates dendritic spine development. Nature 439:283–289

    Article  PubMed  CAS  Google Scholar 

  43. Singer W (1995) Development and plasticity of cortical processing architectures. Science 270:758–764

    Article  PubMed  CAS  Google Scholar 

  44. Sugiyama S, Di Nardo AA, Aizawa S et al. (2008) Experience-dependent transfer of Otx2 homeoprotein into the visual ­cortex activates postnatal plasticity. Cell 134:508–520

    Article  PubMed  CAS  Google Scholar 

  45. Syken J, Grandpre T, Kanold PO, Shatz CJ (2006) PirB restricts ocular-dominance plasticity in visual cortex. Science 313:1795–1800

    Article  PubMed  CAS  Google Scholar 

  46. Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135:422–435

    Article  PubMed  CAS  Google Scholar 

  47. Vorobyov V, Kwok JC, Fawcett JW, Sengpiel F (2013) Effects of digesting chondroitin sulfate proteoglycans on plasticity in cat primary visual cortex. J Neurosci 33:234–243

    Article  PubMed  CAS  Google Scholar 

  48. Weaver IC, Cervoni N, Champagne FA et al. (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  PubMed  CAS  Google Scholar 

  49. Wiesel TN, Hubel DH (1963) Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26:1003–1017

    PubMed  CAS  Google Scholar 

  50. Zhang LI, Bao S, Merzenich MM (2001) Persistent and specific influences of early acoustic environments on primary auditory cortex. Nat Neurosci 4:1123–1130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Fernando Maya-Vetencourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maya-Vetencourt, J.F., Caleo, M. (2013). Experience-Dependent Plasticity in the Central Nervous System. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_25

Download citation

Publish with us

Policies and ethics