Skip to main content

Abstract

Survival depends upon efficient motor control behaviors which enable organisms to navigate through their environment, search for food, find a mate and avoid predation. In this chapter we provide an overview of motor systems that generate movements in a range of different animals. In vertebrates and invertebrates alike motor systems are similar: central networks drive motoneurons to fire which in turn elicit contractions in skeletal muscles to articulate the joints of the limbs or segments of the body. Biomechanical constraints influence behavior, and once behavior is produced sensory information is generated that feeds back and in turn modulates motor control. The components of motor systems, including motoneurons, muscles with their electrical and mechanical properties as well as sensory feedback are present across different phyla but the ways in which they are assembled during development have been sculpted into different species-specific solutions by the forces of natural selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballantyne D, Rathmayer W (1981) On the function of the common inhibitory neurone in the walking legs of the crab, Eriphia spinifrons. J Comp Physiol 143:111–122

    Article  Google Scholar 

  2. Baro DJ, Cole CL, Harris-Warrick RM (1996) RT-PCR analysis of shaker, shab, shaw, and shal gene expression in single neurons and glial cells. Receptor Channel 4:149–159

    CAS  Google Scholar 

  3. Boothby KM, Roberts A (1995) Effects of site of tactile stimulation on the escape swimming responses of hatchling Xenopus laevis embryos. J Zool 235:113–125

    Google Scholar 

  4. Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93:1127–1135

    Article  PubMed  Google Scholar 

  5. Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, Oxford

    Book  Google Scholar 

  6. Burrows M, Hoyle G (1973) Neural mechanism underlying behavior in the locust Schistocerca gregaria. III. Topography of limb motorneurons in the metathoracic ganglion. J Neurobiol 4:167–186

    Article  PubMed  CAS  Google Scholar 

  7. Casasnovas B, Meyrand P (1995) Functional differentiation of adult neural circuits from a single embryonic network. J Neurosci 15:5703–5718

    Google Scholar 

  8. Clarac F, Libersat F, Pflüger HJ, Rathmayer W (1987) Motor pattern analysis in the shore crab (Carcinus maenas) walking freely in water and on land. J Exp Biol 133:395–414

    Google Scholar 

  9. Clarac F, Pearlstein E, Pflieger JF, Vinay L (2004) The in vitro neonatal rat spinal cord preparation: a new insight into mammalian locomotor mechanisms. J Comp Physiol A 190:343–357

    Article  CAS  Google Scholar 

  10. Cruse H (1990) What mechanisms coordinate leg movement in walking arthropods? Trends Neurosci 13:15–21

    Article  PubMed  CAS  Google Scholar 

  11. Duch C, Pflüger HJ (1995) Motor patterns for horizontal and upside-down walking and vertical climbing. J Exp Biol 198:1963–1976

    PubMed  Google Scholar 

  12. Duch C, Bayline RJ, Levine RB (2000) Postembryonic development of the dorsal longitudinal flight muscle and its innervation in Manduca sexta. J Comp Neurol 422:1–17

    Article  PubMed  CAS  Google Scholar 

  13. Ducret E, Le Feuvre Y, Meyrand P, Fénelon VS (2007) Removal of GABA within adult modulatory systems alters electrical coupling and allows expression of an embryonic-like network. J Neurosci 27:3626–3638

    Article  PubMed  CAS  Google Scholar 

  14. Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853

    Article  PubMed  CAS  Google Scholar 

  15. Edwards DH, Heitler WJ, Krasne FB (1999) Fifty years of a command neuron: the neurobiology of escape behavior in the crayfish. Trends Neurosci 22:153–161

    Article  PubMed  CAS  Google Scholar 

  16. Evans PD, O’Shea M (1977) An octopaminergic neuron modulates neuromuscular transmission in the locust. Nature 270:257–259

    Article  PubMed  CAS  Google Scholar 

  17. Friesen WO, Kristan WB (2007) Leech locomotion: swimming, crawling, and decisions. Curr Opin Neurobiol 17:704–711

    Article  PubMed  CAS  Google Scholar 

  18. Furshpan EJ, Potter DD (1959) Transmission at the giant motor synapses of the crayfish. J Physiol 145:289–325

    PubMed  CAS  Google Scholar 

  19. Getting PA (1983) Neural control of swimming in Tritonia. Symp Soc Exp Biol 37:89–128

    PubMed  CAS  Google Scholar 

  20. Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52:751–756

    Article  PubMed  CAS  Google Scholar 

  21. Grillner S, Deliagina T, Ekeberg O, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P (1995) Networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 18:270–279

    PubMed  CAS  Google Scholar 

  22. Heitler WJ, Burrows M (1977) The locust jump. I. The motor programme. J Exp Biol 66:203–219

    PubMed  CAS  Google Scholar 

  23. Heitler WJ, Burrows M (1977) The locust jump. II. Neural circuits of the motor programme. J Exp Biol 66:221–241

    PubMed  CAS  Google Scholar 

  24. Hiebert GW, Whelan PJ, Prochazka A, Pearson KG (1996) Contribution of hindlimb flexor afferents to the timing of the phase transitions in the cat step cycle. J Neurophysiol 75:1126–1137

    PubMed  CAS  Google Scholar 

  25. Hoyle G, Burrows M (1973) Neural mechanisms underlying behavior in the locust Schistocerca gregaria. I. Physiology of identified motorneurons in the metathoracic ganglion. J Neurobiol 4:3–41

    Article  PubMed  CAS  Google Scholar 

  26. Johnston IA (1980) Specialization of fish muscle. In: Goldspink DF (ed) Development and specialization of skeletal muscle. Society for Experimental Biology seminar series, vol 7. p 123–148

    Google Scholar 

  27. Kahn JA, Roberts A (1982) The neuromuscular basis of rhythmic struggling movements in embryos of Xenopus laevis J Exp Biol 99:197–205

    CAS  Google Scholar 

  28. Katz PS (1998) Neuromodulation intrinsic to the central pattern generator for escape swimming in Tritonia. Ann N Y Acad Sci 860:181–188

    Article  PubMed  CAS  Google Scholar 

  29. Kiehn O, Sillar KT, Kjaerulff O, McDearmid JR (1999) Effects of noradrenaline on locomotor rhythm generating networks in the isolated neonatal rat spinal cord. J Neurophysiol 82:741–746

    PubMed  CAS  Google Scholar 

  30. Kim YJ, Zitnan D, Galizia GC, Cho KH, Adams ME (2006) A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr Biol 16:1395–1407

    Article  PubMed  CAS  Google Scholar 

  31. Kriellaars DJ, Brownstone RM, Noga BR, Jordan LM (1994) Mechanical entrainment of fictive locomotion in the decerebrate cat. J Neurophysiol 71:2074–2086

    PubMed  CAS  Google Scholar 

  32. Kristan WB (1983) The neurobiology of swimming in the leech. Trends Neurosci 6:84–88

    Article  Google Scholar 

  33. Kullander K, Butt SJB, Lebret JM, Lundfald L, Restrepo CE, Rydstrom A, Klein R, Kiehn O (2003) Role of EphA4 and EphrinB3 in local neuronal circuits that control walking. Science 299:1889–1892

    Article  PubMed  CAS  Google Scholar 

  34. Levine RB, Morton DB, Restifo LL (1995) Remodeling of the insect nervous system. Curr Opin Neurobiol 5:28–35

    Article  PubMed  CAS  Google Scholar 

  35. Li WC, Soffe SR, Wolf E, Roberts A (2006) Persistent Responses to brief stimuli: feedback excitation among brainstem neurons J Neurosci 26:4026–4035

    Article  CAS  Google Scholar 

  36. Li WC, Sautois B, Roberts A, Soffe SR (2007) Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity J Neurosci 27:12267–12276

    Article  CAS  Google Scholar 

  37. Liao C (2004) Neuromuscular control of trout swimming in a vortex street: implications for energy economy during the Karman gait. J Exp Biol 207:3495–3506

    Article  PubMed  Google Scholar 

  38. Maier L, Rathmayer W, Pette D (1984) pH lability of myosin ATPase activity permits discrimination of different muscle fibre types in crustaceans. Histochemistry 81:75–77

    Article  PubMed  CAS  Google Scholar 

  39. Maier L, Pette D, Rathmayer W (1986) Enzyme activities in single electrophysiologically identified crab muscle fibres. J Physiol 371:191–199

    PubMed  CAS  Google Scholar 

  40. Marder E (2002) Non-mammalian models for studying neural development and function. Nature 417:318–321

    Article  PubMed  CAS  Google Scholar 

  41. Marder E, Bucher D (2001) Central pattern generators and the control of rhythmic movement. Curr Biol 11:R986–R996

    Article  PubMed  CAS  Google Scholar 

  42. Marder E, Bucher D (2007) Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu Rev Physiol 69:291–316

    Article  PubMed  CAS  Google Scholar 

  43. Marden JH, Kramer MG (1997) Locomotor performance of insects with rudimentary wings. Nature 377:332–334

    Article  Google Scholar 

  44. McLean DL, Fetcho JR (2008) Using imaging and genetics in zebrafish to study developing spinal circuits in vivo. Dev Neurobiol 68:817–834

    Article  PubMed  Google Scholar 

  45. Mentel T, Duch C, Stypa H, Wegener G, Müller U, Pflüger HJ (2003) Central modulatory neurons control fuel selection in flight muscle of migratory locust. J Neurosci 23:1109–1113

    PubMed  CAS  Google Scholar 

  46. Mesce KA (2002) Metamodulation of the biogenic amines: second-order modulation by steroid hormones and amine cocktails. Brain Behav Evol 60:339–349

    Article  PubMed  Google Scholar 

  47. Möhl B (1988) Short-term learning during flight control in Locusta migratoria. J Comp Physiol A 163:803–812

    Article  Google Scholar 

  48. Müller KJ, Nicholls JG, Stent GS (eds) (1981) Neurobiology of the leech. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 113–146

    Google Scholar 

  49. Nachtigall W (1989) Mechanics and aerodynamics of flight. In: Goldsworthy GH, Wheeler CH (eds) Insect flight. CRC Press, Boca Raton, pp 1–29

    Google Scholar 

  50. Pflüger HJ, Duch C (2011) Dynamic neural control of muscle metabolism related to motor behavior. Physiology (Bethesda) 26:293–303

    Article  Google Scholar 

  51. Reichert H (1992) Introduction to Neurobiology. Georg Thieme Verlag, Stuttgart and New York

    Google Scholar 

  52. Reichert H, Simeone A (2001) Developmental genetic evidence for a monophyletic origin of the bilaterian brain. Philos Trans R Soc Lond B Biol Sci 356:1533–1544

    Article  PubMed  CAS  Google Scholar 

  53. Richter DW, Spyer KM (2001) Studying rhythmogenesis of breathing: comparison of in vivo and in vitro models. Trends Neurosci 24:464–472

    Article  PubMed  CAS  Google Scholar 

  54. Richerson GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5:449–461

    Article  PubMed  CAS  Google Scholar 

  55. Roberts A, Li WC, Soffe SR (2010) How neurons generate behavior in a hatchling amphibian tadpole: an outline. Front Behav Neurosci 4:1–11

    Google Scholar 

  56. Sillar KT (2009) Mauthner cells. Curr Biol 19:R353–R355

    Article  PubMed  CAS  Google Scholar 

  57. Sillar KT, Li WC (2010) Tadpole swimming circuit. In: Shepherd GM, Grillner S (eds) Handbook of brain microcircuits. Oxford University Press, Oxford/New York

    Google Scholar 

  58. Sillar KT, Combes D, Ramanathan S, Molinari M, Simmers AJ (2008) Neuromodulation and developmental plasticity in the locomotor system of anuran amphibians during metamorphosis. Special issue on “networks in motion”. Brain Res Rev 57:94–102

    Article  PubMed  Google Scholar 

  59. Skiebe P (1999) Allatostatin-like immunoreactivity in the stomatogastric nervous system and the pericardial organs of the crab Cancer pagurus, the lobster Homarus americanus, and the crayfish Cherax destructor and Procambarus clarkii. J Comp Neurol 403:85–105

    Article  PubMed  CAS  Google Scholar 

  60. Sprecher SG, Reichert H (2003) The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. Arthropod Struct Dev 32:141–156

    Article  PubMed  Google Scholar 

  61. Stevenson PA, Kutsch W (1988) Demonstration of functional connectivity of the flight motor system in all stages of the locust. J Comp Physiol A 162:247–259

    Article  Google Scholar 

  62. Strauss R (2002) The central complex and the genetic dissection of locomotor behaviour. Curr Opin Neurobiol 12:633–638

    Article  PubMed  CAS  Google Scholar 

  63. Stuart DG, Hultborn H (2008) Thomas Graham Brown (1882–1965), Anders Lundberg (1920–2009), and the neural control of stepping. Brain Res Rev 59:74–95

    Article  PubMed  Google Scholar 

  64. Watkins BL, Burrows M, Siegler MVS (1985) The structure of locust nonspiking interneurones in relation to their segmental ganglion. J Comp Neurol 240:233–255

    Article  PubMed  CAS  Google Scholar 

  65. Weeks JC (2003) Thinking globally, acting locally: steroid hormone regulation of the dendritic architecture, synaptic connectivity, and death of an individual neuron. Prog Neurobiol 70:421–442

    Article  PubMed  CAS  Google Scholar 

  66. Wiens TJ, Wolf H (1993) The inhibitory motoneurons of crayfish thoracic limbs: identification, structures, and homology with insect common inhibitors. J Comp Neurol 336:261–278

    Article  PubMed  CAS  Google Scholar 

  67. Wilson DM (1961) The central nervous control of locust flight. J Exp Biol 38:472–490

    Google Scholar 

  68. Wolf H (1990) Activity patterns of inhibitory motoneurons and their impact on leg movement in tethered walking locusts. J Exp Biol 152:281–304

    Google Scholar 

  69. Wolf H, Pearson KG (1988) Proprioceptive input patterns elevator activity in the locust flight system. J Neurophysiol 59:1831–1853

    PubMed  CAS  Google Scholar 

  70. Yeh SR, Fricke RA, Edwards DH (1996) The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science 271:366–369

    Article  PubMed  CAS  Google Scholar 

  71. Zitnan D, Hollar L, Spalovska I, Takac P, Zitnanova I, Gill SS, Adams ME (2002) Molecular cloning and function of ecdysis-triggering hormones in the silkworm Bombyx mori. J Exp Biol 205:3459–3473

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Joachim Pflüger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pflüger, HJ., Sillar, K. (2013). Motor Control. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_23

Download citation

Publish with us

Policies and ethics