Skip to main content

Evolution of Nervous Systems and Brains

  • Chapter
  • First Online:

Abstract

The evolution of nervous systems and brains reveals two major evolutionary trends, one leading to ring-shaped nerve systems in cnidarians and ctenophorans, the other as the main track leading to a bilaterally organized nervous system with a circumesophageal ganglion and ventral cords. From there, again two major evolutionary trends originated, one in the protostomes, the other in the deuterostomes. The former culminated in the brain of the mollusk Octopus as well as in the brains of insects, predominantly flies and hymenopterans. Among the deuterostomes, complex brains, while sharing a basic organization, likewise evolved many times independently, e.g. in some teleosts, birds, especially corvids and psittacids, and mammals, especially primates including humans. Animal as well as human intelligence is significantly correlated with the number of neurons in multimodal brain centers and their information processing capacity. Humans have the largest number of cortical neurons as well as the most efficient information-processing capacities among large-brained animals and appear to be the only lifeform with a grammatically and syntactically structured language.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Futuyma DJ (2009) Evolution, 2nd edn. Sinauer, Sunderland

    Google Scholar 

  2. Raff R (1996) The shape of life. Genes, development, and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  3. Hennig W (1966, 1979) Phylogenetic systematics. University of Illinois Press, Urbana

    Google Scholar 

  4. Ghysen A (2003) The origin and evolution of the nervous system. Int J Dev Biol 47:555–62

    PubMed  Google Scholar 

  5. Berg HC (2000) Motile behavior of bacteria. Phys Today 53:24–9

    Article  CAS  Google Scholar 

  6. Armus HL, Montgomery AR, Jellison JL (2006) Discrimination learning in paramecia (Paramecium caudatum). Psychol Rec 56:489–98

    Google Scholar 

  7. Lichtneckert R, Reichert H (2007) Origin and evolution of the first nervous systems. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 1, Theories, development, invertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 289–315

    Chapter  Google Scholar 

  8. Bullock TH, Horridge GA (1965) Structure and function in the nervous system of invertebrates. Freeman, San Francisco

    Google Scholar 

  9. Satterlie RA, Spencer AN (1983) Neuronal control of ­locomotion in hydrozoan medusae. J Comp Physiol 150:195–206

    Article  Google Scholar 

  10. Grimmelikhuijzen CJP, Carstensen K, Darmer D, McFarlane I, Moosler A, Nothacker HP, Reinscheid RK, Rinehart KL, Schmutzler C, Vollert H (1992) Coelenterate neuropeptides: structure, action and biosynthesis. Am Zool 32:1–12

    CAS  Google Scholar 

  11. Hirth F, Reichert H (2007) Basic nervous system types: one or many. In: Striedter GF, Rubenstein JL (eds) Evolution of nervous systems. Theories, development, invertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 55–72

    Chapter  Google Scholar 

  12. Moroz LL (2009) On the independent origins of complex brains and neurons. BBE 74:177–90

    Article  Google Scholar 

  13. Paulus HF (1979) Eye structure and the monophyly of the arthropoda. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York

    Google Scholar 

  14. Hennig W (1972) Taschenbuch der speziellen Zoologie, Teil 2, Wirbellose II. H Deutsch, Frankfurt

    Google Scholar 

  15. Kandel ER (1976) Cellular basis of behavior – an introduction to behavioral neurobiology. WH Freeman, New York

    Google Scholar 

  16. Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Clarendon, Oxford

    Google Scholar 

  17. Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford Biology, Oxford

    Google Scholar 

  18. Shomrat T, Zarrella I, Fiorito G, Hochner B (2008) The octopus vertical lobe modulates short-term learning rate and uses LTP to acquire long-term memory. Curr Biol 18:337–42

    Article  PubMed  CAS  Google Scholar 

  19. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  20. White JG, Southgate E, Thomson JN, Brenner S (1976) The structure of the ventral nerve cord of Caenorhabditis elegans. Phil T Roy Soc B 275:327–48

    Article  CAS  Google Scholar 

  21. Schafer WR (2005) Deciphering the neural and molecular mechanisms of C. elegans behavior. Curr Biol 15:R723–9

    Article  PubMed  CAS  Google Scholar 

  22. Withington PM (2007) The evolution of arthropod nervous systems; insight from neural development in the Onychophora and Myriapoda. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 1, Theories, development, invertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 317–36

    Chapter  Google Scholar 

  23. Kästner A (1969) Lehrbuch der speziellen Zoologie, Band I, Wirbellose 1. Teil. G Fischer, Stuttgart

    Google Scholar 

  24. Foelix RF (2010) Biology of spiders, 3rd edn. Oxford University Press, Oxford/New York

    Google Scholar 

  25. Mobbs PG (1984) Neural networks in the mushroom bodies of the honeybee. J Insect Physiol 30:43–58

    Article  Google Scholar 

  26. de Marco RJ, Menzel R (2008) Learning and memory in communication and navigation in insects. In: Byrne JH, Menzel R (eds) Learning theory and behavior, vol 4, Learning and memory: a comprehensive reference. Academic (Elsevier), Amsterdam/Oxford, pp 477–98

    Google Scholar 

  27. Strausfeld NJ, Strausfeld C, Loesel R, Rowell D, Stowe S (2006) Arthropod phylogeny: onychophoran brain organization suggests an archaic relationship with a chelicerate stem lineage. Proc Biol Sci 7:1857–66

    Article  Google Scholar 

  28. Holland LZ, Short S (2008) Gene duplication, co-option and recruitment during the origin of the vertebrate brain from the invertebrate chordate brain. BBE 72:91–105

    Article  Google Scholar 

  29. Nieuwenhuys R, ten Donkelaar HJ, Nicholson C (1998) The central nervous system of vertebrates, 3rd edn. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  30. Striedter GF (2005) Brain evolution. Sinauer, Sunderland

    Google Scholar 

  31. Northcutt RG (1987) Brain and sense organs of the earliest vertebrates: reconstruction of a morphotype. In: Foreman RE, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes, vol 103, NATO ASI series, series A: life sciences. Plenum, New York

    Google Scholar 

  32. Northcutt RG (1989) Brain variation and phylogenetic trends in elasmobranch fishes. J Exp Zool Suppl 2:83–100

    Article  PubMed  CAS  Google Scholar 

  33. Romer AS, Parson TS (1986) The vertebrate body. Saunders College Publishing, Philadelphia

    Google Scholar 

  34. Wullimann MF, Vernier P (2007) Evolution of the nervous system in fishes. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 2, Non-mammalian vertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 39–60

    Chapter  Google Scholar 

  35. Dicke U, Roth G (2007) Evolution of the amphibian nervous system. In: Kaas JH, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 2, Non-mammalian vertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 61–124

    Chapter  Google Scholar 

  36. Nieuwenhuys R, Voogd J, van Huijzen C (1988) The human central nervous system. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  37. Karten HJ (1991) Homology and evolutionary origins of the “neocortex”. Brain Behav Evol 38:264–72

    Article  PubMed  CAS  Google Scholar 

  38. Reiner A, Yamamoto K, Karten HJ (2005) Organization and evolution of the avian forebrain. Anat Rec A 287A:1080–102

    Article  Google Scholar 

  39. Medina L (2007) Do birds and reptiles possess homologues of mammalian visual, somatosensory, and motor cortices. In: Kaas J, Bullock TH (eds) Evolution of nervous systems. A comprehensive review, vol 2, Non-mammalian vertebrates. Academic (Elsevier), Amsterdam/Oxford, pp 163–94

    Chapter  Google Scholar 

  40. Creutzfeldt OD (1983) Cortex Cerebri. Leistung, strukturelle und funktionelle Organisation der Hirnrinde. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  41. Kaas JH (2007) Reconstructing the organization of neocortex of the first mammals and subsequent modifications. In: Kaas JH, Krubitzer LA (eds) Evolution of nervous systems. A comprehensive review, vol 3, Mammals. Academic (Elsevier), Amsterdam/Oxford, pp 27–48

    Chapter  Google Scholar 

  42. Changizi MA (2007) Scaling the brain and its connections. In: Kaas JH, Krubitzer LA (eds) Evolution of nervous systems. A comprehensive review, vol 3, Mammals. Academic (Elsevier), Amsterdam/Oxford, pp 167–80

    Chapter  Google Scholar 

  43. Güntürkün O (2008) Wann ist ein Gehirn intelligent? Spektrum der Wissenschaft 11:124–132

    Chapter  Google Scholar 

  44. Jerison HJ (1973) Evolution of the brain and intelligence. Academic, Amsterdam/Oxford

    Google Scholar 

  45. Haug H (1987) Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: a stereological investigation of man and his variability and a comparison with some mammals (­primates, whales, marsupials, insectivores, and one elephant). Am J Anat 180:126–42

    Article  PubMed  CAS  Google Scholar 

  46. Russell S (1979) Brain size and intelligence: a comparative perspective. In: Oakley DA, Plotkin HC (eds) Brain, behavior and evolution. Methuen, London, pp 126–53

    Google Scholar 

  47. Falk D (2007) Evolution of the primate brain. In: Henke W, Tattersall I (eds) Handbook of paleaanthropology. Primate evolution and human origins, vol 2. Springer, Berlin, pp 1133–62

    Chapter  Google Scholar 

  48. Hofman MA (2000) Evolution and complexity of the human brain: some organizing principles. In: Roth G, Wullimann MF (eds) Brain, evolution and cognition. Spektrum Akademischer Verlag, Heidelberg, pp 501–21

    Google Scholar 

  49. van Dongen PAM (1998) Brain size in vertebrates. In: Niewenhuys R (ed) The central nervous system of vertebrates. Springer, Berlin/Heidelberg/New York, pp 2099–134

    Google Scholar 

  50. Pilbeam D, Gould SJ (1974) Size and scaling in human evolution. Science 186:892–901

    Article  PubMed  CAS  Google Scholar 

  51. Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9:250–7

    Article  PubMed  Google Scholar 

  52. Roth G, Dicke U (2012) Evolution of the brain and intelligence in primates. Prog Brain Res 195:413–30

    Article  PubMed  Google Scholar 

  53. Byrne R (1995) The thinking ape. Evolutionary origins of intelligence. Oxford University Press, Oxford/New York

    Book  Google Scholar 

  54. Gibson KR, Rumbaugh D, Beran M (2001) Bigger is better: primate brain size in relationship to cognition. In: Falk D, Gibson KR (eds) Evolutionary anatomy of the primate cerebral cortex. Cambridge University Press, Cambridge/New York, pp 79–97

    Chapter  Google Scholar 

  55. Farris SM (2008) Evolutionary convergence of higher brain centers spanning the protostome-deuterostome boundary. Brain Behav Evol 72:106–22

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard Roth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, G., Dicke, U. (2013). Evolution of Nervous Systems and Brains. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_2

Download citation

Publish with us

Policies and ethics