Skip to main content

Abstract

Vision is for humans usually the most present sense. Our eyes gather light reflection from surrounding objects, triggering neuronal activity in photoreceptors. After extracting important aspects of the light stimulation, the retina sends sequences of action potentials to the brain. Large parts of our brain are devoted to processing of visual information, providing the basis for our behavioral decisions relying on our percept of visual stimuli. Even though the visual system is not as prominent for many animals and some animals are even more specialized to vision than humans, the main characteristics of their visual systems are very similar across species. Even vertebrates and invertebrates share many of the principles of visual information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dayan R, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge [Textbook]

    Google Scholar 

  2. Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol (London) 178:477–504

    CAS  Google Scholar 

  3. Ben-Yishai R, Lev Bar-Or R, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc Natl Acad Sci USA 92:3844–3848

    Article  CAS  PubMed  Google Scholar 

  4. Borst A (2009) Drosophila’s view on insect vision. Curr Biol 19:R36–R47

    Google Scholar 

  5. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, Gallant JL, Rust NC (2005) Do we know what the early visual system does? J Neurosci 25:10577–10597

    Article  CAS  PubMed  Google Scholar 

  6. Conway BR, Livingstone MS (2006) Spatial and temporal properties of cone signals in alert macaque primary visual cortex. J Neurosci 26:10826–10846

    Article  CAS  PubMed  Google Scholar 

  7. Das A (2005) Cortical maps: Where theory meets experiments. Neuron 47:168–171

    Article  CAS  PubMed  Google Scholar 

  8. Dowling JE (1987) The retina: an approachable part of the brain. Harvard University Press, Cambridge [Textbook]

    Google Scholar 

  9. Eagleman DM (2001) Visual illusions and neurobiology. Nat Rev Neurosci 2:920–926

    Article  CAS  PubMed  Google Scholar 

  10. Egelhaaf M (2006) The neural computation of visual motion information. In: Warrant E, Nilsson DE (eds) Invertebrate Vision. Cambridge Univ Press [textbook]

    Article  CAS  PubMed  Google Scholar 

  11. Euler T, Hausselt SE, Margolis DJ, Breuninger T, Castell X, Detwiler PB, Denk W (2009) Eyecup scope – optical recordings of light stimulus-evoked fluorescence signals in the retina. Pflugers Arch 457:1393–1414

    Google Scholar 

  12. Fain GL, Hardie R, Laughlin SB (2010) Phototransduction and the evolution of photoreceptors. Curr Biol 20:R114–R124

    Article  CAS  PubMed  Google Scholar 

  13. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    Article  CAS  PubMed  Google Scholar 

  14. von Frisch K (1914) Der Farbensinn und Formensinn der Biene. Zool Jahrb Allg Jena 35:1–182

    Google Scholar 

  15. Funke K, Kisvarday Z, Volgushev M, Wörgötter F (2002) Integrating anatomy and physiology of the primary visual pathway: from LGN to cortex. In: Van Hemmen L (ed) Models of neural networks IV. Springer, Berlin/Heidelberg/New York, pp 97–171

    Chapter  Google Scholar 

  16. Hartline HK (1938) The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Am J Physiol 121:400–415

    Google Scholar 

  17. von Helmholtz H (1867) Handbuch der physiologischen Optik von Helmholtz. Verlag L. Voss, Leipzig. Download: vlp.mpiwg-berlin.mpg.de/library/data/lit39509?

  18. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (London) 160:106–154

    CAS  Google Scholar 

  19. Huberman AD, Feller MB, Chapman B (2008) Mechanisms underlying development of visual maps and receptive fields. Annu Rev Neurosci 31:479–509

    Article  CAS  PubMed  Google Scholar 

  20. Itti L, Koch C (2001) Computational modelling of visual attention. Nat Rev Neurosci 2:194–203

    Article  CAS  PubMed  Google Scholar 

  21. Kelber A, Vorobyev M, Osorio D (2003) Animal colour vision – behavioural tests and physiological concepts. Biol Rev 78:81–118

    Article  PubMed  Google Scholar 

  22. Kelber A (2006) Invertebrate colour vision In: Warrant E, Nilsson DE (eds) Invertebrate Vision. Cambridge Univ Press, Cambridge/New York [Textbook]

    Google Scholar 

  23. King AJ (2004) The superior colliculus. Curr Biol 14:R335–R338

    Article  CAS  PubMed  Google Scholar 

  24. Konen CS, Kastner S (2008) Two hierarchically organized neural systems for object information in human visual cortex. Nat Neurosci 11:224–231

    Article  CAS  PubMed  Google Scholar 

  25. Kuffler SW (1953) Discharge patterns and functional organization of mammalian retina. J Neurophysiol 16:37–68

    CAS  PubMed  Google Scholar 

  26. Marshal J, Oberwinkler J (1999) Ultraviolet vision: The colourful world of the mantis shrimp. Nature 401:873–874

    Google Scholar 

  27. Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu CZ (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Google Scholar 

  28. Masland RH (2001) The fundamental plan of the retina. Nat Neurosci 4:877–886

    Article  CAS  PubMed  Google Scholar 

  29. Nassi JJ, Callaway EM (2009) Parallel processing strategies of the primate visual system. Nat Rev Neurosci 10:360–372

    Article  CAS  PubMed  Google Scholar 

  30. Oesch N, Euler T, Taylor WR (2005) Direction-selective dendritic action potentials in rabbit retina. Neuron 47:739–750

    Google Scholar 

  31. Osorio D, Vorobyev M (1997) Sepia tones, stomatopod signals and the uses of colour. Trends Ecol Evol 12:167–168

    Article  CAS  PubMed  Google Scholar 

  32. Palmeri TJ, Gauthier I (2004) Visual object understanding. Nat Rev Neurosci 5:291–303

    Article  CAS  PubMed  Google Scholar 

  33. Passingham R (2009) How good is the macaque monkey model of the human brain? Curr Opin Neurobiol 19:6–11

    Article  CAS  PubMed  Google Scholar 

  34. Ramón y Cajal S (1893) La retine des vertebres. Cellule 9:121–255. English translation in: Thorpe SA, Glickstein M (1972) The structure of the retina. Thomas, Springfield

    Google Scholar 

  35. Raz A, Buhle J (2006) Typologies of attentional networks. Nat Rev Neurosci 7:367–379

    Article  CAS  PubMed  Google Scholar 

  36. Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith W (ed) Sensory communication. MIT Press/Wiley, Cambridge/New York, pp 303–317

    Google Scholar 

  37. Ringach D, Shapley R (2004) Reverse correlation in neurophysiology. Cogn Sci 28:147–166

    Article  Google Scholar 

  38. Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66:15–36

    Article  CAS  PubMed  Google Scholar 

  39. Series P, Lorenceau J, Fregnac Y (2003) The “silent” surround of V1 receptive fields: theory and experiments. J Physiol Paris 97:453–474

    Article  PubMed  Google Scholar 

  40. Shushruth S, Ichida JM, Levitt JB, Angelucci A (2009) Comparison of spatial summation properties of neurons in macaque V1 and V2. J Neurophysiol 102:2069–2083

    Article  CAS  PubMed  Google Scholar 

  41. Solomon SG, Lennie P (2007) The machinery of colour vision. Nat Rev Neurosci 8:276–286

    Article  CAS  PubMed  Google Scholar 

  42. Stein BE, Stanford TR (2008) Multisensory integration: current issues from the perspective of the single neuron. Nat Rev Neurosci 9:255–266

    Article  CAS  PubMed  Google Scholar 

  43. Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–1946

    Article  CAS  PubMed  Google Scholar 

  44. Warrant E, Nilsson DE (eds) (2006) Invertebrate vision. Cambridge University Press, Cambridge/New York [Textbook]

    Google Scholar 

  45. Wässle H (2004) Parallel processing in the mammalian retina. Nat Rev Neurosci 5:747–757

    Article  Google Scholar 

  46. Wegener D, Freiwald WA, Kreiter AK (2004) The influence of sustained attention on stimulus selectivity in macaque visual area MT. J Neurosci 24:6106–6114

    Article  CAS  PubMed  Google Scholar 

Internet Resources

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jutta Kretzberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kretzberg, J., Ernst, U. (2013). Vision. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_18

Download citation

Publish with us

Policies and ethics