Skip to main content

Abstract

Mechanosensation, the ability to detect – and respond to – mechanical stimulus force, is a basic property shared by virtually all organisms and cells: tension forces acting on cells, for example, can influence cell shape by acting through integrin receptors, and mechanosensitive ion channels mediate volume changes in many pro- and eukaryotic cells. Dedicated mechanosensory (or mechanoreceptor) cells and organs are found in metazoans where they serve the detection of, e.g., medium flows, body movements, gravity, touch, sound, and noxious mechanical stimuli such as pinching of the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329

    Article  PubMed  CAS  Google Scholar 

  2. Machemer H, Bräucker R (1992) Gravireception and graviresponses in ciliates. Acta Protozool 31:185–214

    PubMed  CAS  Google Scholar 

  3. Roberts AM (2010) The mechanics of gravitaxis in Paramecium. J Exp Biol 213:4158–4162

    Article  PubMed  CAS  Google Scholar 

  4. Sukharev S, Corey DP (2004) Mechanosensitive channels: multiplicity of families and gating paradigms. Sci STKE 3:re4

    Google Scholar 

  5. Lumpkin EA, Marshall KL, Nelson AM (2010) The cell biology of touch. J Cell Biol 191:237–248

    Article  PubMed  CAS  Google Scholar 

  6. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654

    Article  PubMed  CAS  Google Scholar 

  7. Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52

    Article  PubMed  CAS  Google Scholar 

  8. Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103

    Article  PubMed  CAS  Google Scholar 

  9. Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8:510–521

    Article  PubMed  CAS  Google Scholar 

  10. Bechstedt S, Howard J (2007) Models of hair cell mechanotransduction. Curr Top Membr 59:399–424

    Article  CAS  Google Scholar 

  11. Nadrowski B, Göpfert MC (2009) Modeling auditory transducer dynamics. Curr Opin Otolaryngol Head Neck Surg 17:400–406

    Article  PubMed  Google Scholar 

  12. Hudspeth AJ, Choe Y, Mehta AD, Martin P (2000) Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci USA 97:11765–11772

    Article  PubMed  CAS  Google Scholar 

  13. Gillespie PG, Cyr JL (2004) Myosin-1c, the hair cell’s adaptation motor. Annu Rev Physiol 66:521–545

    Article  PubMed  CAS  Google Scholar 

  14. Peng AW, Salles FT, Pan B, Ricci AJ (2011) Integrating the biophysical and molecular mechanisms of auditory hair cell mechanotransduction. Nat Commun 1:523

    Article  Google Scholar 

  15. Chalfie M, Au M (1989) Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243:1027–1033

    Article  PubMed  CAS  Google Scholar 

  16. Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82:358–370

    Article  PubMed  CAS  Google Scholar 

  17. Sulston J, Dew M, Brenner S (1975) Dopaminergic neurons in the nematode Caenorhabditis elegans. J Comp Neurol 163:215–226

    Article  PubMed  CAS  Google Scholar 

  18. Chelur DS, Ernstrom GG, Goodman MB, Yao CA, Chen L, O’Hagan R, Chalfie M (2002) The mechanosensory protein MEC-6 is a subunit of the C. elegans touch-cell degenerin channel. Nature 420:669–673

    Article  PubMed  CAS  Google Scholar 

  19. Goodman MB, Ernstrom GG, Chelur DS, O’Hagan R, Yao CA, Chalfie M (2002) MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation. Nature 415:1039–1042

    Article  PubMed  CAS  Google Scholar 

  20. O’Hagan R, Chalfie M, Goodman MB (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat Neurosci 8:43–50

    Article  PubMed  Google Scholar 

  21. Cantor RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem B 101:1723–1725

    Article  CAS  Google Scholar 

  22. Brown AL, Liao ZW, Goodman MB (2008) MEC-2 and MEC-6 in the Caenorhabditis elegans sensory mechanotransduction complex: auxiliary subunits that enable channel activity. J Gen Physiol 131:605–616

    Article  PubMed  CAS  Google Scholar 

  23. Bounoutas A, O’Hagan R, Chalfie M (2009) The multipurpose 15-protofilament microtubules in C. elegans have specific roles in mechanosensation. Curr Biol 19:1362–1367

    Article  PubMed  CAS  Google Scholar 

  24. Cueva JG, Mulholland A, Goodman MB (2007) Nanoscale organization of the MEC-4 DEG/ENaC sensory mechanotransduction channel in Caenorhabditis elegans touch receptor neurons. J Neurosci 27:14089–14098

    Article  PubMed  CAS  Google Scholar 

  25. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  26. Kernan M, Cowan D, Zuker C (1994) Genetic dissection of mechanosensory transduction: mechanoreception-defective mutations of Drosophila. Neuron 12:1195–1206

    Article  PubMed  CAS  Google Scholar 

  27. Walker RG, Willingham AT, Zuker CS (2000) A Drosophila mechanosensory transduction channel. Science 287:2229–2234

    Article  PubMed  CAS  Google Scholar 

  28. Delmas P, Hao JZ, Rodat-Despoix L (2011) Molecular mechanisms of mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12:139–153

    Article  PubMed  CAS  Google Scholar 

  29. Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    Article  PubMed  CAS  Google Scholar 

  30. Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865

    Article  PubMed  CAS  Google Scholar 

  31. Gronenberg W, Tautz J, Hölldobler B (1993) Fast trap jaws and giant neurons in the ant Odontomachus. Science 262:561–563

    Article  PubMed  CAS  Google Scholar 

  32. Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E (2008) ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci 9:601–612

    Article  PubMed  CAS  Google Scholar 

  33. Petersen CC (2007) The functional organization of the barrel cortex. Neuron 56:339–355

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jörg T. Albert or Martin C. Göpfert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Albert, J.T., Göpfert, M.C. (2013). Mechanosensation. In: Galizia, C., Lledo, PM. (eds) Neurosciences - From Molecule to Behavior: a university textbook. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10769-6_16

Download citation

Publish with us

Policies and ethics