Advertisement

Non-supersymmetric Attractors in Symmetric Coset Spaces

Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 134)

Abstract

We develop a method of constructing generic black hole attractor solutions, both BPS and non-BPS, single-centered as well as multi-centered, in a large class of 4D \(\mathcal{N}\,=\,2\) supergravities coupled to vector-multiplets with cubic prepotentials. The method is applicable to models for which the 3D moduli spaces obtained via c -map are symmetric coset spaces. All attractor solutions in such a 3D moduli space can be constructed algebraically in a unified way. Then the 3D attractor solutions are mapped back into four dimensions to give 4D extremal black holes.

Keywords

Black Hole High Energy Phys Extremal Black Hole Attractor Solution Black Hole Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The author would like to thank D. Gaiotto and M. Padi for the collaboration on the project this talk was based on. We are grateful to A. Neitzke and J. Seo for helpful discussions. It is also a pleasure to thank the warm hospitality of the School of Attractor Mechanism (2007). The work is supported by DOE grant DE-FG02-91ER40654.

References

  1. 1.
    S. Ferrara, R. Kallosh, A. Strominger, Phys. Rev. D 52, 5412 (1995). arXiv:hep-th/9508072
  2. 2.
    A. Sen, J. High Energy Phys. 0509, 038 (2005). arXiv:hep-th/0506177
  3. 3.
    K. Goldstein, N. Iizuka, R.P. Jena, S.P. Trivedi, Phys. Rev. D 72, 124021 (2005). arXiv:hep-th/0507096
  4. 4.
    A. Sen, J. High Energy Phys. 0603, 008 (2006). arXiv:hep-th/0508042
  5. 5.
    P.K. Tripathy, S.P. Trivedi, J. High Energy Phys. 0603, 022 (2006). arXiv:hep-th/0511117
  6. 6.
    M. Alishahiha, H. Ebrahim, J. High Energy Phys. 0603, 003 (2006). arXiv:hep-th/0601016
  7. 7.
    R. Kallosh, N. Sivanandam, M. Soroush, J. High Energy Phys. 0603, 060 (2006). arXiv:hep-th/0602005
  8. 8.
    B. Chandrasekhar, S. Parvizi, A. Tavanfar, H. Yavartanoo, J. High Energy Phys. 0608, 004 (2006). arXiv:hep-th/0602022
  9. 9.
    B. Sahoo, A. Sen, J. High Energy Phys. 0609, 029 (2006). arXiv:hep-th/0603149
  10. 10.
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen, S.P. Trivedi, J. High Energy Phys. 0610, 058 (2006). arXiv:hep-th/0606244
  11. 11.
    R. Kallosh, N. Sivanandam, M. Soroush, Phys. Rev. D 74, 065008 (2006). arXiv:hep-th/0606263
  12. 12.
    B. Sahoo, A. Sen, J. High Energy Phys. 0701, 010 (2007). arXiv:hep-th/0608182
  13. 13.
    L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, arXiv:hep-th/0611345
  14. 14.
    R. D’Auria, S. Ferrara, M. Trigiante, J. High Energy Phys. 0703, 097 (2007). arXiv:hep-th/0701090
  15. 15.
    S. Nampuri, P.K. Tripathy, S.P. Trivedi. arXiv:0705.4554 [hep-th]
  16. 16.
    A. Dabholkar, A. Sen, S.P. Trivedi, J. High Energy Phys. 0701, 096 (2007). arXiv:hep-th/0611143
  17. 17.
    K. Saraikin, C. Vafa. arXiv:hep-th/0703214
  18. 18.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Nucl. Phys. B 500, 75 (1997). arXiv:hep-th/9702103
  19. 19.
    B. Bates, F. Denef. arXiv:hep-th/0304094
  20. 20.
    F. Denef, G.W. Moore. arXiv:hep-th/0702146
  21. 21.
    D. Gaiotto, W.W. Li, M. Padi. arXiv:0710.1638 [hep-th]
  22. 22.
    A. Ceresole, G. Dall’Agata, J. High Energy Phys. 0703, 110 (2007). arXiv:hep-th/0702088
  23. 23.
    G. Lopes Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter, J. Perz, J. High Energy Phys. 0710, 063 (2007). arXiv:0706.3373 [hep-th]
  24. 24.
    P. Breitenlohner, D. Maison, G.W. Gibbons, Commun. Math. Phys. 120, 295 (1988)zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. 25.
    S. Cecotti, S. Ferrara, L. Girardello, Int. J. Mod. Phys. A 4, 2475 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  26. 26.
    S. Ferrara, S. Sabharwal, Nucl. Phys. B 332, 317 (1990)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    B. de Wit, F. Vanderseypen, A. Van Proeyen, Nucl. Phys. B 400, 463 (1993). arXiv:hep-th/9210068
  28. 28.
    A. Ceresole, R. D’Auria, S. Ferrara, Nucl. Phys. Proc. Suppl. 46, 67 (1996). arXiv:hep-th/9509160
  29. 29.
    M. Gunaydin, A. Neitzke, B. Pioline, A. Waldron, Phys. Rev. D 73, 084019 (2006). arXiv:hep-th/0512296
  30. 30.
    A. Bouchareb, G. Clement, C.M. Chen, D.V. Gal’tsov, N.G. Scherbluk, T. Wolf, Phys. Rev. D 76, 104032 (2007). arXiv:0708.2361 [hep-th]
  31. 31.
    G. Clement. arXiv:0710.1192 [gr-qc]
  32. 32.
    M. Gunaydin, A. Neitzke, O. Pavlyk, B. Pioline. arXiv:0707.1669 [hep-th]
  33. 33.
    B. Pioline, Class. Quant. Grav. 23, S981 (2006). arXiv:hep-th/0607227
  34. 34.
    D.H. Collingwood, W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras (Van Nostrand Reinhold, New York, 1993)zbMATHGoogle Scholar
  35. 35.
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova, W.K. Wong, Phys. Rev. D 54, 6293 (1996). arXiv:hep-th/9608059

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Jefferson Physical LaboratoryHarvard UniversityCambridgeUSA

Personalised recommendations