Advertisement

Lectures on Spectrum Generating Symmetries and U-Duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace

  • Murat GünaydinEmail author
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 134)

Abstract

We review the underlying algebraic structures of supergravity theories with symmetric scalar manifolds in five and four dimensions, orbits of their extremal black hole solutions and the spectrum generating extensions of their U-duality groups. For 5D, N = 2 Maxwell–Einstein supergravity theories (MESGT) defined by Euclidean Jordan algebras, J, the spectrum generating symmetry groups are the conformal groups Conf(J) of J which are isomorphic to their U-duality groups in four dimensions. Similarly, the spectrum generating symmetry groups of 4D, N = 2 MESGTs are the quasiconformal groups QConf(J) associated with J that are isomorphic to their U-duality groups in three dimensions. We then review the work on spectrum generating symmetries of spherically symmetric stationary 4D BPS black holes, based on the equivalence of their attractor equations and the equations for geodesic motion of a fiducial particle on the target spaces of corresponding 3D supergravity theories obtained by timelike reduction. We also discuss the connection between harmonic superspace formulation of 4D, N = 2 sigma models coupled to supergravity and the minimal unitary representations of their isometry groups obtained by quantizing their quasiconformal realizations. We discuss the relevance of this connection to spectrum generating symmetries and conclude with a brief summary of more recent results.

Keywords

Black Hole Black Hole Solution Jordan Algebra Supergravity Theory Twistor Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

I would like to thank Stefano Bellucci for his kind invitation to deliver these lectures at SAM 2007 and the participants for numerous stimulating discussions. I wish to thank Stefano Bellucci, Sergio Ferrara, Kilian Koepsell, Alessio Marrani, Andy Neitzke, Hermann Nicolai, Oleksandr Pavlyk, Boris Pioline and Andrew Waldron for enjoyable collaborations and stimulating discussions on various topics covered in these lectures. Thanks are also due to the organizers of the “Fundamental Aspects of Superstring Theory 2009” Workshop at KITP, UC Santa Barbara and of the New Perspectives in String Theory 2009 Workshop at GGI, Florence where part of these lectures were written up. This work was supported in part by the National Science Foundation under grant number PHY-0555605. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    W. Nahm, Supersymmetries and their representations. Nucl. Phys. B 135, 149 (1978)CrossRefADSGoogle Scholar
  2. 2.
    E. Cremmer, B. Julia, J. Scherk, Supergravity theory in 11 dimensions. Phys. Lett. B 76, 409 (1978)CrossRefADSGoogle Scholar
  3. 3.
    C.M. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B 438, 109 (1995). http://www.arXiv.org/abs/hep-th/9410167hep-th/9410167
  4. 4.
    N. Marcus, J.H. Schwarz, Three-dimensional supergravity theories. Nucl. Phys. B 228, 145 (1983)MathSciNetGoogle Scholar
  5. 5.
    M. Günaydin, G. Sierra, P.K. Townsend, Exceptional supergravity theories and the magic square. Phys. Lett. B 133, 72 (1983)CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    M. Günaydin, G. Sierra, P.K. Townsend, The geometry of \(\mathcal{N}\,=\,2\) Maxwell–Einstein supergravity and Jordan algebras. Nucl. Phys. B 242, 244 (1984)CrossRefADSGoogle Scholar
  7. 7.
    M. Günaydin, G. Sierra, P.K. Townsend, Gauging the d = 5 Maxwell–Einstein supergravity theories: more on Jordan algebras. Nucl. Phys. B 253, 573 (1985)CrossRefADSGoogle Scholar
  8. 8.
    M. Günaydin, G. Sierra, P.K. Townsend, More on d = 5 Maxwell–Einstein supergravity: symmetric spaces and kinks. Class. Quant. Grav. 3, 763 (1986)zbMATHCrossRefADSGoogle Scholar
  9. 9.
    B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structure of special geometries. Nucl. Phys. B 400, 463 (1993). http://www.arXiv.org/abs/hep-th/9210068hep-th/9210068
  10. 10.
    D. Kazhdan, A. Polishchuk, Minimal representations: spherical vectors and automorphic functionals, in Algebraic Groups and Arithmetic (Tata Institute of Fundamental Research, Mumbai, 2004), pp. 127–198Google Scholar
  11. 11.
    K. McCrimmon, A Taste of Jordan Algebras, Universitext (Springer, New York, 2004)Google Scholar
  12. 12.
    N. Jacobson, in Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications, Vol. XXXIX (American Mathematical Society, Providence, RI, 1968)Google Scholar
  13. 13.
    M. Günaydin, F. Gürsey, Quark structure and octonions. J. Math. Phys. 14, 1651 (1973)zbMATHCrossRefGoogle Scholar
  14. 14.
    S. Ferrara, M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A 13, 2075 (1998). http://www.arXiv.org/abs/hep-th/9708025hep-th/9708025
  15. 15.
    M. Günaydin, K. Koepsell, H. Nicolai, Conformal and quasiconformal realizations of exceptional Lie groups. Commun. Math. Phys. 221, 57 (2001). http://www.arXiv.org/abs/hep-th/0008063hep-th/0008063
  16. 16.
    M. Günaydin, Exceptional realizations of Lorentz group: supersymmetries and leptons. Nuovo Cim. A 29, 467 (1975)CrossRefADSGoogle Scholar
  17. 17.
    V.G. Kac, Lie superalgebras. Adv. Math. 26 (1977) 8zbMATHCrossRefGoogle Scholar
  18. 18.
    M. Günaydin, Quadratic Jordan formulation of quantum mechanics and construction of Lie (super)algebras from Jordan (super)algebras. Ann. Israel Phys. Soc. 3, 279 (1980). Presented at 8th Int. Colloq. on Group Theoretical Methods in Physics, Kiriat Anavim, Israel, 25–29 March 1979Google Scholar
  19. 19.
    M. Günaydin, The exceptional superspace and the quadratic Jordan formulation of quantum mechanics, in Elementary Particles and the Universe: Essays in Honor of Murray Gell-Mann, Pasadena 1989, ed. by J. Schwarz (Cambridge University Press, Cambridge, 1989), pp. 99–119Google Scholar
  20. 20.
    M. Günaydin, Generalized conformal and superconformal group actions and Jordan algebras. Mod. Phys. Lett. A 8, 1407 (1993). http://www.arXiv.org/abs/hep-th/9301050hep-th/9301050
  21. 21.
    G. Sierra, An application to the theories of Jordan algebras and Freudenthal triple systems to particles and strings. Class. Quant. Grav. 4, 227 (1987)zbMATHCrossRefMathSciNetADSGoogle Scholar
  22. 22.
    M. Günaydin, O. Pavlyk, Generalized spacetimes defined by cubic forms and the minimal unitary realizations of their quasiconformal groups. J. High Energy Phys. 08, 101 (2005). http://www.arXiv.org/abs/hep-th/0506010hep-th/0506010
  23. 23.
    M. Günaydin, AdS/CFT dualities and the unitary representations of non-compact groups and supergroups: Wigner versus Dirac. http://www.arXiv.org/abs/hep-th/0005168hep-th/0005168
  24. 24.
    G. Mack, M. de Riese, Simple space–time symmetries: generalizing conformal field theory. http://www.arXiv.org/abs/hep-th/0410277hep-th/0410277
  25. 25.
    I.L. Kantor, Certain generalizations of Jordan algebras. Trudy Sem. Vektor. Tenzor. Anal. 16, 407 (1972)MathSciNetGoogle Scholar
  26. 26.
    J. Tits, Une classe d’algèbres de Lie en relation avec les algèbres de Jordan. Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math. 24, 530 (1962)Google Scholar
  27. 27.
    M. Koecher, Imbedding of Jordan algebras into Lie algebras. II. Am. J. Math. 90, 476 (1968)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    S. Ferrara, M. Gunaydin, Orbits and attractors for N = 2 Maxwell–Einstein supergravity theories in five dimensions. Nucl. Phys. B 759, 1 (2006). http://www.arXiv.org/abs/hep-th/0606108hep-th/0606108
  29. 29.
    S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D 54, 1525 (1996). http://www.arXiv.org/abs/hep-th/9603090hep-th/9603090
  30. 30.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B 500, 75 (1997). http://www.arXiv.org/abs/hep-th/9702103hep-th/9702103
  31. 31.
    S. Ferrara, R. Kallosh, On N = 8 attractors. Phys. Rev. D 73, 125005 (2006). http://www.arXiv.org/abs/hep-th/0603247hep-th/ 0603247
  32. 32.
    A.H. Chamseddine, S. Ferrara, G.W. Gibbons, R. Kallosh, Enhancement of supersymmetry near 5D black hole horizon. Phys. Rev. D 55, 3647 (1997). http://www.arXiv.org/abs/hep-th/9610155hep-th/9610155
  33. 33.
    S. Ferrara, J.M. Maldacena, Branes, central charges and U-duality invariant BPS conditions. Class. Quant. Grav. 15, 749 (1998). http://www.arXiv.org/abs/hep-th/9706097hep-th/9706097Google Scholar
  34. 34.
    M. Günaydin, Unitary realizations of U-duality groups as conformal and quasiconformal groups and extremal black holes of supergravity theories. AIP Conf. Proc. 767, 268 (2005). http://www.arXiv.org/abs/hep-th/0502235hep-th/0502235
  35. 35.
    M. Günaydin, Realizations of exceptional U-duality groups as conformal and quasiconformal groups and their minimal unitary representations. Comment. Phys. Math. Soc. Sci. Fenn. 166, 111 (2004). http://www.arXiv.org/abs/hep-th/0409263hep-th/0409263
  36. 36.
    D. Gaiotto, A. Strominger, X. Yin, 5D black rings and 4D black holes. J. High Energy Phys. 02, 023 (2006). http://www.arXiv.org/abs/hep-th/0504126hep-th/0504126
  37. 37.
    D. Gaiotto, A. Strominger, X. Yin, New connections between 4D and 5D black holes. J. High Energy Phys. 02, 024 (2006). http://www.arXiv.org/abs/hep-th/0503217hep-th/0503217
  38. 38.
    H. Elvang, R. Emparan, D. Mateos, H.S. Reall, Supersymmetric 4D rotating black holes from 5D black rings. http://www.arXiv.org/abs/hep-th/0504125hep-th/0504125
  39. 39.
    B. Pioline, BPS black hole degeneracies and minimal automorphic representations. J. High Energy Phys. 0508, 071 (2005). http://www.arXiv.org/abs/hep-th/0506228hep-th/0506228
  40. 40.
    B. de Wit, A. Van Proeyen, Special geometry, cubic polynomials and homogeneous quaternionic spaces. Commun. Math. Phys. 149 (1992) 307, http://www.arXiv.org/abs/hep-th/9112027hep-th/9112027
  41. 41.
    M. Günaydin, S. McReynolds, M. Zagermann, The R-map and the coupling of N = 2 tensor multiplets in 5 and 4 dimensions. J. High Energy Phys. 01, 168 (2006). http://www.arXiv.org/abs/hep-th/0511025hep-th/0511025
  42. 42.
    M. Koecher, The Minnesota Notes on Jordan Algebras and Their Applications, ed. by A. Krieg, S. Walcher. Lecture Notes in Mathematics, vol. 1710 (Springer, Berlin, 1999)Google Scholar
  43. 43.
    H. Freudenthal, Lie groups in the foundations of geometry. Advances in Math. 1(2) 145 (1964)Google Scholar
  44. 44.
    H. Freudenthal, Beziehungen der E 7 und E 8 zur Oktavenebene. I. Nederl. Akad. Wetensch. Proc. Ser. A 57 = Indag. Math. 16, 218 (1954)Google Scholar
  45. 45.
    S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A 21, 5043 (2006). http://www.arXiv.org/abs/hep-th/0606209hep-th/0606209
  46. 46.
    S. Ferrara, S. Sabharwal, Quaternionic manifolds for type II superstring vacua of Calabi–Yau spaces. Nucl. Phys. B 332, 317 (1990)CrossRefMathSciNetADSGoogle Scholar
  47. 47.
    S. Bellucci, S. Ferrara, M. Gunaydin, A. Marrani, SAM lectures on extremal black holes in d = 4 extended supergravity. http://www.arXiv.org/abs/0905373909053739
  48. 48.
    A. Ceresole, R. D’Auria, S. Ferrara, The symplectic structure of \(\mathcal{N}\,=\,2\) supergravity and its central extension. Nucl. Phys. Proc. Suppl. 46, 67 (1996). http://www.arXiv.org/abs/hep-th/9509160hep-th/9509160
  49. 49.
    E. Cremmer, A. Van Proeyen, Classification of Kahler manifolds in \(\mathcal{N}\,=\,2\) vector multiplet supergravity couplings. Class. Quant. Grav. 2, 445 (1985)zbMATHCrossRefADSGoogle Scholar
  50. 50.
    M. Günaydin, Realizations of exceptional U-duality groups as conformal and quasi-conformal groups and their minimal unitary representations. Prepared for 3rd International Symposium on Quantum Theory and Symmetries (QTS3), Cincinnati, OH, 10–14 Sept 2003Google Scholar
  51. 51.
    M. Günaydin, A. Neitzke, B. Pioline, A. Waldron, BPS black holes, quantum attractor flows and automorphic forms. Phys. Rev. D 73, 084019 (2006). http://www.arXiv.org/abs/hep-th/0512296hep-th/0512296
  52. 52.
    M. Günaydin, A. Neitzke, B. Pioline, A. Waldron, Quantum attractor flows. J. High Energy Phys. 09, 056 (2007). http://www.arXiv.org/abs/0707026707070267
  53. 53.
    I. Kantor, I. Skopets, Some results on Freudenthal triple systems. Sel. Math. Sov. 2, 293 (1982)zbMATHGoogle Scholar
  54. 54.
    M. Günaydin, A. Neitzke, O. Pavlyk, B. Pioline, Quasi-conformal actions, quaternionic discrete series and twistors: SU(2, 1) and G 2(2). Commun. Math. Phys. 283, 169 (2008). http://www.arXiv.org/abs/0707166907071669
  55. 55.
    B. Pioline, Lectures on Black Holes, Topological Strings and Quantum Attractors (2.0). Lecture Notes on Physics, vol. 755 (Springer, Berlin, 2008), pp. 1–91Google Scholar
  56. 56.
    S. Ferrara, R. Kallosh, A. Strominger, \(\mathcal{N}\,=\,2\) extremal black holes. Phys. Rev. D 52, 5412 (1995). http://www.arXiv.org/abs/hep-th/9508072hep-th/9508072
  57. 57.
    P. Breitenlohner, G.W. Gibbons, D. Maison, Four-dimensional black holes from Kaluza–Klein theories. Commun. Math. Phys. 120, 295 (1988)zbMATHCrossRefMathSciNetADSGoogle Scholar
  58. 58.
    M. Cvetic, D. Youm, All the static spherically symmetric black holes of heterotic string on a six torus. Nucl. Phys. B 472 (1996) 249, http://www.arXiv.org/abs/hep-th/9512127hep-th/9512127
  59. 59.
    M. Cvetic, D. Youm, Dyonic BPS saturated black holes of heterotic string on a six torus. Phys. Rev. D 53, 584 (1996). http://www.arXiv.org/abs/hep-th/9507090hep-th/9507090
  60. 60.
    M. Günaydin, A. Neitzke, B. Pioline, Topological wave functions and heat equations. J. High Energy Phys. 12, 070 (2006). http://www.arXiv.org/abs/hep-th/0607200hep-th/0607200
  61. 61.
    J. Bagger, E. Witten, Matter couplings in \(\mathcal{N}\,=\,2\) supergravity. Nucl. Phys. B 222, 1 (1983)CrossRefMathSciNetADSGoogle Scholar
  62. 62.
    G.W. Moore, Arithmetic and attractors. http://www.arXiv.org/abs/hep-th/9807087hep-th/9807087
  63. 63.
    F. Denef, Supergravity flows and D-brane stability. J. High Energy Phys. 08, 050 (2000). http://www.arXiv.org/abs/hep-th/0005049hep-th/0005049
  64. 64.
    M. Gutperle, M. Spalinski, Supergravity instantons for \(\mathcal{N}\,=\,2\) hypermultiplets. Nucl. Phys. B 598, 509 (2001). http://www.arXiv.org/abs/hep-th/0010192hep-th/0010192
  65. 65.
    A. Neitzke, B. Pioline, S. Vandoren, Twistors and black holes. J. High Energy Phys. 04, 038 (2007). http://www.arXiv.org/abs/hep-th/0701214hep-th/0701214
  66. 66.
    M. Günaydin, Harmonic superspace, minimal unitary representations and quasiconformal groups. J. High Energy Phys. 05, 049 (2007). http://www.arXiv.org/abs/hep-th/0702046hep-th/0702046
  67. 67.
    A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky, E. Sokatchev, Unconstrained N = 2 Matter, Yang–Mills and supergravity theories in harmonic superspace. Class. Quant. Grav. 1, 469 (1984)CrossRefADSGoogle Scholar
  68. 68.
    J.A. Bagger, A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, Gauging N = 2 sigma models in harmonic superspace. Nucl. Phys. B 303, 522 (1988)CrossRefMathSciNetADSGoogle Scholar
  69. 69.
    A. Galperin, E. Ivanov, O. Ogievetsky, Harmonic space and quaternionic manifolds. Ann. Phys. 230, 201 (1994). http://www.arXiv.org/abs/hep-th/9212155hep-th/9212155Google Scholar
  70. 70.
    A. Galperin, O. Ogievetsky, Harmonic potentials for quaternionic symmetric sigma models. Phys. Lett. B 301, 67 (1993). http://www.arXiv.org/abs/hep-th/9210153hep-th/9210153
  71. 71.
    A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky, E.S. Sokatchev, Harmonic Superspace (Cambridge University Press, Cambridge, 2001), 306 pGoogle Scholar
  72. 72.
    A. Galperin, V. Ogievetsky, N = 2 D = 4 supersymmetric sigma models and Hamiltonian mechanics. Class. Quant. Grav. 8, 1757 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  73. 73.
    M. Günaydin, O. Pavlyk, A unified approach to the minimal unitary realizations of noncompact groups and supergroups. J. High Energy Phys. 09, 050 (2006). http://www.arXiv.org/abs/hep-th/0604077hep-th/0604077
  74. 74.
    J.A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces. J. Math. Mech. 14, 1033 (1965)zbMATHMathSciNetGoogle Scholar
  75. 75.
    M. Günaydin, K. Koepsell, H. Nicolai, The minimal unitary representation of E 8(8). Adv. Theor. Math. Phys. 5, 923 (2002). http://www.arXiv.org/abs/hep-th/0109005hep-th/0109005
  76. 76.
    M. Günaydin, O. Pavlyk, Minimal unitary realizations of exceptional U-duality groups and their subgroups as quasiconformal groups. J. High Energy Phys. 01, 019 (2005). http://www.arXiv.org/abs/hep-th/0409272hep-th/0409272
  77. 77.
    M. Günaydin, C. Saclioglu, Oscillator-like unitary representations of noncompact groups with a Jordan structure and the noncompact groups of supergravity. Commun. Math. Phys. 87, 159 (1982)zbMATHCrossRefADSGoogle Scholar
  78. 78.
    M. Gunaydin, Exceptional supergravity theories, Jordan algebras and the magic square. Presented at 13th Int. Colloq. on Group Theoretical Methods in Physics, College Park, MD, 21–25 May 1984Google Scholar
  79. 79.
    P. Candelas, G.T. Horowitz, A. Strominger, E. Witten, Vacuum configurations for superstrings. Nucl. Phys. B 258, 46 (1985)CrossRefMathSciNetADSGoogle Scholar
  80. 80.
    A.C. Cadavid, A. Ceresole, R. D’Auria, S. Ferrara, Eleven-dimensional supergravity compactified on Calabi–Yau threefolds. Phys. Lett. B 357, 76 (1995). http://www.arXiv.org/abs/hep-th/9506144hep-th/9506144
  81. 81.
    B.H. Gross, A remark on tube domains. Math. Res. Lett. 1(1), 1 (1994)zbMATHADSGoogle Scholar
  82. 82.
    C. Vafa, E. Witten, Dual string pairs with N = 1 and N = 2 supersymmetry in four dimensions. Nucl. Phys. Proc. Suppl. 46 (1996) 225, http://www.arXiv.org/abs/hep-th/9507050hep-th/9507050
  83. 83.
    A. Sen, C. Vafa, Dual pairs of type II string compactification. Nucl. Phys. B 455, 165 (1995). http://www.arXiv.org/abs/hep-th/9508064hep-th/9508064
  84. 84.
    M. Günaydin. Talk at IAS, Princeton, Sept 2006Google Scholar
  85. 85.
    M. Günaydin, From d = 6, N = 1 to d = 4, N = 2, no-scale models and Jordan algebras. Talk at the Conference “30 Years of Supergravity”, Paris, October 2006. http://cft.igc.psu.edu/research/index.shtml\#gunaydin
  86. 86.
    S. Ferrara, J.A. Harvey, A. Strominger, C. Vafa, Second quantized mirror symmetry. Phys. Lett. B 361, 59 (1995). http://www.arXiv.org/abs/hep-th/9505162hep-th/9505162
  87. 87.
    A. Bouchareb et al., G 2 generating technique for minimal D=5 supergravity and black rings. Phys. Rev. D 76, 104032 (2007). http://www.arXiv.org/abs/0708236107082361
  88. 88.
    D.V. Gal’tsov, N.G. Scherbluk, Generating technique for U(1)3, 5D supergravity. http://www.arXiv.org/abs/0805392408053924
  89. 89.
    G. Compere, S. de Buyl, E. Jamsin, A. Virmani, G2 dualities in D = 5 supergravity and black strings. Class. Quant. Grav. 26, 125016 (2009). http://www.arXiv.org/abs/0903164509031645Google Scholar
  90. 90.
    M. Berkooz, B. Pioline, 5D black holes and non-linear sigma models. J. High Energy Phys. 05, 045 (2008). http://www.arXiv.org/abs/0802165908021659
  91. 91.
    D. Gaiotto, W.W. Li, M. Padi, Non-supersymmetric attractor flow in symmetric spaces. J. High Energy Phys. 12, 093 (2007). http://www.arXiv.org/abs/0710163807101638
  92. 92.
    W. Li, Non-Supersymmetric attractors in symmetric coset spaces. http://www.arXiv.org/abs/0801253608012536
  93. 93.
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante, T. Van Riet, Generating geodesic flows and supergravity solutions. Nucl. Phys. B 812, 343 (2009). http://www.arXiv.org/abs/0806231008062310
  94. 94.
    G. Bossard, H. Nicolai, K.S. Stelle, Universal BPS structure of stationary supergravity solutions. http://www.arXiv.org/abs/0902443809024438
  95. 95.
    M. Gunaydin, O. Pavlyk, Spectrum generating conformal and quasiconformal U-duality groups, supergravity and spherical vectors. http://www.arXiv.org/abs/0901164609011646
  96. 96.
    M. Gunaydin, O. Pavlyk, Quasiconformal realizations of E 6(6), E 7(7), E 8(8) and SO(n + 3, m + 3), N = 4 and N > 4 supergravity and spherical vectors. http://www.arXiv.org/abs/0904078409040784
  97. 97.
    M. Gunaydin, P. van Nieuwenhuizen, N.P. Warner, General construction of the unitary representations of anti-de Sitter superalgebras and the spectrum of the S 4 compactification of eleven-dimensional supergravity. Nucl. Phys. B 255, 63 (1985)CrossRefADSGoogle Scholar
  98. 98.
    M. Gunaydin, N. Marcus, The spectrum of the S 5 compactification of the chiral N = 2, D = 10 supergravity and the unitary supermultiplets of U(2, 2 ∕ 4). Class. Quant. Grav. 2, L11 (1985)CrossRefMathSciNetADSGoogle Scholar
  99. 99.
    J.M. Maldacena, The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). http://www.arXiv.org/abs/hep-th/9711200hep-th/9711200
  100. 100.
    M. Gunaydin, N.P. Warner, Unitary supermultiplets of OSp(8 ∕ 4, R) and the spectrum of the S 7 compactification of eleven-dimensional supergravity. Nucl. Phys. B 272, 99 (1986)CrossRefMathSciNetADSGoogle Scholar
  101. 101.
    B.H. Gross, N.R. Wallach, On quaternionic discrete series representations, and their continuations. J. Reine Angew. Math. 481, 73 (1996)zbMATHMathSciNetGoogle Scholar
  102. 102.
    M. Günaydin. (In preparation)Google Scholar
  103. 103.
    Y. Dolivet, B. Julia, C. Kounnas, Magic N = 2 supergravities from hyper-free superstrings. J. High Energy Phys. 02, 097 (2008). http://www.arXiv.org/abs/0712286707122867
  104. 104.
    M. Bianchi, S. Ferrara, Enriques and octonionic magic supergravity models. J. High Energy Phys. 02, 054 (2008). http://www.arXiv.org/abs/0712297607122976
  105. 105.
    A.N. Todorov, CY manifolds with locally symmetric moduli spaces. http://www.arXiv.org/abs/arXiv:08064010arXiv:08064010

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute for Gravitation and the Cosmos, Physics DepartmentPenn State UniversityUniversity ParkUSA

Personalised recommendations