Advertisement

SAM Lectures on Extremal Black Holes in d = 4 Extended Supergravity

  • Stefano BellucciEmail author
  • Sergio Ferrara
  • Murat Günaydin
  • Alessio Marrani
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 134)

Abstract

We report on recent results in the study of extremal black hole attractors in N = 2, d = 4 ungauged Maxwell–Einstein supergravities. For homogeneous symmetric scalar manifolds, the three general classes of attractor solutions with non-vanishing Bekenstein–Hawking entropy are discussed. They correspond to three (inequivalent) classes of orbits of the charge vector, which sits in the relevant symplectic representation R V of the U-duality group. Other than the \( \frac{1}{2}{- BPS} \) one, there are two other distinct non-BPS classes of charge orbits, one of which has vanishing central charge. The complete classification of the U-duality orbits, as well as of the moduli spaces of non-BPS attractors (spanned by the scalars which are not stabilized at the black hole event horizon), is also reviewed. Finally, we consider the analogous classification for N ≥ 3-extended, d = 4 ungauged supergravities, in which also the \( \frac{1}{N}{- BPS} \) attractors yield a related moduli space.

Keywords

Black Hole Modulus Space High Energy Phys Jordan Algebra Extremal Black Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported in part by the ERC Advanced Grant no. 226455, “Supersymmetry, Quantum Gravity and Gauge Fields” (SUPERFIELDS).

A. M. would like to thank the William I. Fine Theoretical Physics Institute (FTPI) of the University of Minnesota, Minneapolis, MN, USA, the Center for Theoretical Physics (CTP) of the University of California, Berkeley, CA, USA, and the Department of Physics and Astronomy of the University of California, Los Angeles, CA, USA, where part of this work was done, for kind hospitality and stimulating environment. Furthermore, A. M. would like to thank Ms. Hanna Hacham for peaceful and inspiring hospitality in Palo Alto, CA, USA.

The work of S. B. has been supported in part by the grant INTAS-05-7928.

The work of S. F. has been supported also in part by INFN – Frascati National Laboratories, and by D.O.E. grant DE-FG03-91ER40662, Task C.

The work of M. G. has been supported in part by National Science Foundation under grant number PHY-0555605. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

The work of A. M. has been supported by an INFN visiting Theoretical Fellowship at SITP, Stanford University, Stanford, CA, USA.

References

  1. 1.
    C. Hull, P.K. Townsend, Unity of superstring dualities. Nucl. Phys. B 438, 109 (1995). hep-th/9410167
  2. 2.
    S. Ferrara, M. Günaydin, Orbits of exceptional groups, duality and BPS states in string theory. Int. J. Mod. Phys. A 13, 2075 (1998). hep-th/9708025
  3. 3.
    S. Bellucci, S. Ferrara, M. Günaydin, A. Marrani, Charge orbits of symmetric special geometries and attractors. Int. J. Mod. Phys. A 21, 5043 (2006). hep-th/0606209
  4. 4.
    S. Ferrara, R. Kallosh, A. Strominger, N = 2 Extremal black holes. Phys. Rev. D 52, 5412 (1995). hep-th/9508072
  5. 5.
    A. Strominger, Macroscopic entropy of N = 2 extremal black holes. Phys. Lett. B 383, 39 (1996). hep-th/9602111
  6. 6.
    S. Ferrara, R. Kallosh, Supersymmetry and attractors. Phys. Rev. D 54, 1514 (1996). hep-th/9602136
  7. 7.
    S. Ferrara, R. Kallosh, Universality of supersymmetric attractors. Phys. Rev. D 54, 1525 (1996). hep-th/9603090
  8. 8.
    S. Ferrara, G.W. Gibbons, R. Kallosh, Black holes and critical points in moduli space. Nucl. Phys. B 500, 75 (1997). hep-th/9702103
  9. 9.
    A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity. J. High Energy Phys. 09, 038 (2005). hep-th/0506177
  10. 10.
    K. Goldstein, N. Iizuka, R.P. Jena, S.P. Trivedi, Non-supersymmetric attractors. Phys. Rev. D 72, 124021 (2005). hep-th/0507096
  11. 11.
    A. Sen, Entropy function for heterotic black holes. J. High Energy Phys. 03, 008 (2006). hep-th/0508042
  12. 12.
    R. Kallosh, New attractors. J. High Energy Phys. 0512, 022 (2005). hep-th/0510024
  13. 13.
    P.K. Tripathy, S.P. Trivedi, Non-supersymmetric attractors in string theory, J. High Energy Phys. 0603, 022 (2006). hep-th/0511117
  14. 14.
    A. Giryavets, New attractors and area codes. J. High Energy Phys. 0603, 020 (2006). hep-th/0511215
  15. 15.
    K. Goldstein, R.P. Jena, G. Mandal, S.P. Trivedi, A C-function for non-supersymmetric attractors. J. High Energy Phys. 0602, 053 (2006). hep-th/0512138
  16. 16.
    M. Günaydin, A. Neitzke, B. Pioline, A. Waldron, BPS black holes, quantum attractor flows and automorphic forms. Phys. Rev. D 73, 084019 (2006). hep-th/0512296
  17. 17.
    M. Alishahiha, H. Ebrahim, Non-supersymmetric attractors and entropy function. J. High Energy Phys. 0603, 003 (2006). hep-th/0601016
  18. 18.
    R. Kallosh, N. Sivanandam, M. Soroush, The non-BPS black hole attractor equation. J. High Energy Phys. 0603, 060 (2006). hep-th/0602005
  19. 19.
    B. Chandrasekhar, S. Parvizi, A. Tavanfar, H. Yavartanoo, Non-supersymmetric attractors in R 2 gravities. J. High Energy Phys. 0608, 004 (2006). hep-th/0602022
  20. 20.
    J.P. Hsu, A. Maloney, A. Tomasiello, Black hole attractors and pure spinors. J. High Energy Phys. 0609, 048 (2006). hep-th/0602142
  21. 21.
    S. Bellucci, S. Ferrara, A. Marrani, On some properties of the attractor equations. Phys. Lett. B 635, 172 (2006). hep-th/0602161
  22. 22.
    S. Bellucci, S. Ferrara, A. Marrani, in Supersymmetric Mechanics, vol 2: The Attractor Mechanism and Space–Time Singularities. Lecture Notes on Physics, vol 701 (Springer, Heidelberg, 2006)Google Scholar
  23. 23.
    S. Ferrara, R. Kallosh, On N = 8 attractors. Phys. Rev. D 73, 125005 (2006). hep-th/0603247
  24. 24.
    S. Ferrara, M. Günaydin, Orbits and attractors for N = 2 Maxwell–Einstein supergravity theories in five dimensions. Nucl. Phys. B 759, 1 (2006). hep-th/0606108
  25. 25.
    M. Alishahiha, H. Ebrahim, New attractor, entropy function and black hole partition function. J. High Energy Phys. 0611, 017 (2006). hep-th/0605279
  26. 26.
    D. Astefanesei, K. Goldstein, R.P. Jena, A. Sen, S.P. Trivedi, Rotating attractors. J. High Energy Phys. 0610, 058 (2006). hep-th/0606244
  27. 27.
    R. Kallosh, N. Sivanandam, M. Soroush, Exact attractive non-BPS STU black holes. Phys. Rev. D 74, 065008 (2006). hep-th/0606263
  28. 28.
    P. Kaura, A. Misra, On the existence of non-supersymmetric black hole attractors for two-parameter Calabi–Yau’s and attractor equations. Fortsch. Phys. 54, 1109 (2006). hep-th/0607132 Google Scholar
  29. 29.
    G.L. Cardoso, V. Grass, D. Lüst, J. Perz, Extremal non-BPS black holes and entropy extremization. J. High Energy Phys. 0609, 078 (2006). hep-th/0607202
  30. 30.
    J.F. Morales, H. Samtleben, Entropy function and attractors for AdS black holes. J. High Energy Phys. 0610, 074 (2006). hep-th/0608044
  31. 31.
    S. Bellucci, S. Ferrara, A. Marrani, A. Yeranyan, Mirror Fermat Calabi–Yau threefolds and Landau–Ginzburg black hole attractors. Riv. Nuovo Cim. 029, 1 (2006). hep-th/0608091
  32. 32.
    D. Astefanesei, K. Goldstein, S. Mahapatra, Moduli and (un)attractor black hole thermodynamics. Gen. Rel. Grav. 40, 2069 (2008). hep-th/0611140
  33. 33.
    G.L. Cardoso, B. de Wit, S. Mahapatra, Black hole entropy functions and attractor equations. J. High Energy Phys. 0703, 085 (2007). hep-th/0612225
  34. 34.
    R. D’Auria, S. Ferrara, M. Trigiante, Critical points of the black-hole potential for homogeneous special geometries. J. High Energy Phys. 0703, 097 (2007). hep-th/0701090
  35. 35.
    S. Bellucci, S. Ferrara, A. Marrani, Attractor horizon geometries of extremal black holes, in Proceedings of the XVII SIGRAV Conference, Turin, Italy, 4–7 Sept 2006. hep-th/0702019
  36. 36.
    A. Ceresole, G. Dall’Agata, Flow equations for non-BPS extremal black holes. J. High Energy Phys. 0703, 110 (2007). hep-th/0702088
  37. 37.
    L. Andrianopoli, R. D’Auria, S. Ferrara, M. Trigiante, Black hole attractors in N = 1 supergravity. J. High Energy Phys. 0707, 019 (2007). hep-th/0703178
  38. 38.
    K. Saraikin, C. Vafa, Non-supersymmetric black holes and topological strings. Class. Quant. Grav. 25, 095007 (2008). hep-th/0703214
  39. 39.
    S. Ferrara, A. Marrani, N = 8 non-BPS attractors, fixed scalars and magic supergravities. Nucl. Phys. B 788, 63 (2008). arXiV:0705.3866
  40. 40.
    S. Nampuri, P.K. Tripathy, S.P. Trivedi, On the stability of non-supersymmetric attractors in string theory. J. High Energy Phys. 0708, 054 (2007). arXiV:0705.4554
  41. 41.
    L. Andrianopoli, R. D’Auria, E. Orazi, M. Trigiante, First order description of black holes in moduli space. J. High Energy Phys. 0711, 032 (2007). arXiV:0706.0712
  42. 42.
    S. Ferrara, A. Marrani, On the moduli space of non-BPS attractors for N = 2 symmetric manifolds. Phys. Lett. B 652, 111 (2007). arXiV:0706.1667
  43. 43.
    D. Astefanesei, H. Yavartanoo, Stationary black holes and attractor mechanism. Nucl. Phys. B 794, 13 (2008). arXiv:0706.1847
  44. 44.
    G.L. Cardoso, A. Ceresole, G. Dall’Agata, J.M. Oberreuter, J. Perz, First-order flow equations for extremal black holes in very special geometry. J. High Energy Phys. 0710, 063 (2007). arXiV:0706.3373 Google Scholar
  45. 45.
    A. Misra, P. Shukla, Moduli stabilization, large-volume dS minimum without D3-bar branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi–Yau’s. Nucl. Phys. B 799, 165 (2008). arXiV:0707.0105
  46. 46.
    M. Günaydin, A. Neitzke, B. Pioline, A. Waldron, Quantum attractor flows. J. High Energy Phys. 0709, 056 (2007). arXiv:0707.0267
  47. 47.
    A. Ceresole, S. Ferrara, A. Marrani, 4d/5d Correspondence for the black hole potential and its critical points. Class. Quant. Grav. 24, 5651 (2007). arXiV:0707.0964 Google Scholar
  48. 48.
    M.M. Anber, D. Kastor, The attractor mechanism in Gauss–Bonnet gravity. J. High Energy Phys. 0710, 084 (2007). arXiv:0707.1464
  49. 49.
    Y.S. Myung, Y.-W. Kim, Y.-J. Park, New attractor mechanism for spherically symmetric extremal black holes. Phys. Rev. D 76, 104045 (2007). arXiv:0707.1933
  50. 50.
    S. Bellucci, A. Marrani, E. Orazi, A. Shcherbakov, Attractors with vanishing central charge. Phys. Lett. B 655, 185 (2007). ArXiV:0707.2730
  51. 51.
    K. Hotta, T. Kubota, Exact solutions and the attractor mechanism in non-BPS black holes. Prog. Theor. Phys. 118(5), 969 (2007). arXiv:0707.4554
  52. 52.
    X. Gao, Non-supersymmetric attractors in Born–Infeld black holes with a cosmological constant. J. High Energy Phys. 0711, 006 (2007). arXiv:0708.1226
  53. 53.
    S. Ferrara, A. Marrani, Black hole attractors in extended supergravity, in Proceedings of 13th International Symposium on Particles, Strings and Cosmology (PASCOS 07), London, England, 2–7 July 2007. AIP Conf. Proc. 957, 58 (2007). arXiv:0708.1268
  54. 54.
    A. Sen, Black hole entropy function, attractors and precision counting of microstates. Gen. Rel. Grav. 40, 2249 (2008). arXiv:0708.1270
  55. 55.
    A. Belhaj, L.B. Drissi, E.H. Saidi, A. Segui, N = 2 Supersymmetric black attractors in six and seven dimensions. Nucl. Phys. B 796, 521 (2008). arXiv:0709.0398
  56. 56.
    L. Andrianopoli, S. Ferrara, A. Marrani, M. Trigiante, Non-BPS attractors in 5 d and 6 d extended supergravity. Nucl. Phys. B 795, 428 (2008). arXiv:0709.3488
  57. 57.
    D. Gaiotto, W. Li, M. Padi, Non-supersymmetric attractor flow in symmetric spaces. J. High Energy Phys. 0712, 093 (2007). arXiv:0710.1638
  58. 58.
    S. Bellucci, S. Ferrara, A. Marrani, A. Shcherbakov, Splitting of attractors in 1-modulus quantum corrected special geometry. J. High Energy Phys. 0802, 088 (2008). arXiv:0710.3559
  59. 59.
    E.G. Gimon, F. Larsen, J. Simon, Black holes in supergravity: the non-BPS branch. J. High Energy Phys. 0801, 040 (2008). arXiv:0710.4967
  60. 60.
    D. Astefanesei, H. Nastase, H. Yavartanoo, S. Yun, Moduli flow and non-supersymmetric AdS attractors. J. High Energy Phys. 0804, 074 (2008). arXiv:0711.0036
  61. 61.
    S. Bellucci, S. Ferrara, R. Kallosh, A. Marrani, Extremal black hole and flux vacua attractors, in Proceedings of the Winter School on Attractor Mechanism 2006 (SAM2006), INFN-LNF, Frascati, Italy, 20–24 March 2006. Lecture Notes on Physics, vol. 755, (Springer, Berlin, 2008), p. 115. arXiv:0711.4547
  62. 62.
    R.-G. Cai, D.-W. Pang, A note on exact solutions and attractor mechanism for non-BPS black holes. J. High Energy Phys. 0801, 046 (2008). arXiv:0712.0217
  63. 63.
    M. Huebscher, P. Meessen, T. Ortín, S. Vaulà, Supersymmetric N = 2 Einstein–Yang–Mills monopoles and covariant attractors. Phys. Rev. D 78, 065031 (2008). arXiv:0712.1530
  64. 64.
    W. Li, Non-supersymmetric attractors in symmetric coset spaces, in Proceedings of 3rd School on Attractor Mechanism (SAM 2007), Frascati, Italy, 18–22 June 2007. arXiv:0801.2536
  65. 65.
    S. Bellucci, S. Ferrara, A. Marrani, A. Yeranyan, d = 4 Black hole attractors in N = 2 supergravity with Fayet–Iliopoulos terms. Phys. Rev. D 77, 085027 (2008). arXiv:0802.0141
  66. 66.
    E.H. Saidi, BPS and non BPS 7D black attractors in M-theory on K3. arXiv:0802.0583
  67. 67.
    E.H. Saidi, On black hole effective potential in 6D∕7D, N = 2 supergravity. Nucl. Phys. B 803, 235 (2008). arXiv:0803.0827
  68. 68.
    E.H. Saidi, A. Segui, Entropy of Pairs of dual attractors in six and seven dimensions. arXiv:0803.2945
  69. 69.
    A. Sen, Entropy function and AdS(2)∕CFT(1) correspondence. J. High Energy Phys. 0811, 075 (2008). arXiv:0805.0095
  70. 70.
    S. Bellucci, S. Ferrara, A. Marrani, Attractors in black. Fortsch. Phys. 56, 761 (2008). arXiv:0805.1310 Google Scholar
  71. 71.
    S. Ferrara, K. Hayakawa, A. Marrani, Erice lectures on black holes and attractors, in Proceedings of the International School of Subnuclear Physics, 45th Course “Search for the ‘Totally Unexpected’ in the LHC Era”, Erice, Italy, 29 Aug – 7 Sept 2007. arXiv:0805.2498
  72. 72.
    D. Astefanesei, N. Banerjee, S. Dutta, (Un)attractor black holes in higher derivative AdS gravity. J. High Energy Phys. 0811, 070 (2008). arXiv:0806.1334
  73. 73.
    M. Huebscher, P. Meessen, T. Ortín, S. Vaulà, N = 2 Einstein–Yang–Mills’s BPS solutions. J. High Energy Phys. 0809, 099 (2008). arXiv:0806.1477
  74. 74.
    E. Bergshoeff, W. Chemissany, A. Ploegh, M. Trigiante, T. Van Riet, Generating geodesic flows and supergravity solutions. Nucl. Phys. B 812, 343 (2009). arXiv:0806.2310
  75. 75.
    M.C.N. Cheng, E.P. Verlinde, Wall crossing, discrete attractor flow, and Borcherds algebra. arXiv:0806.2337
  76. 76.
    S. Ferrara, A. Gnecchi, A. Marrani, d = 4 Attractors, effective horizon radius and fake supergravity. Phys. Rev. D 78, 065003 (2008). arXiv:0806.3196
  77. 77.
    S. Bellucci, S. Ferrara, A. Marrani, A. Yeranyan, stu Black holes unveiled. Entropy 10 (4), 507 (2008). arXiv:0807.3503
  78. 78.
    J. de Boer, J. Manschot, K. Papadodimas, E. Verlinde, The chiral ring of AdS(3)∕CFT(2) and the attractor mechanism. J. High Energy Phys. 0903, 030 (2009). arXiv:0809.0507
  79. 79.
    A. Sen, Quantum entropy function from AdS(2)∕CFT(1) correspondence. arXiv:0809.3304
  80. 80.
    S. Bellucci, S. Ferrara, A. Marrani, A. Shcherbakov, Quantum lift of non-BPS flat directions. Phys. Lett. B 672, 77 (2009). arXiv:0811.3494
  81. 81.
    S. Ferrara, A. Marrani, J.F. Morales, H. Samtleben, Intersecting attractors. Phys. Rev. D 79, 065031 (2009). arXiv:0812.0050
  82. 82.
    K. Hotta, Holographic RG flow dual to attractor flow in extremal black holes. arXiv:0902.3529
  83. 83.
    D. Astefanesei, Y.K. Srivastava, CFT duals for attractor horizons. arXiv:0902.4033
  84. 84.
    G. Bossard, H. Nicolai, K.S. Stelle, Universal BPS structure of stationary supergravity solutions. arXiv:0902.4438
  85. 85.
    A. Sen, Arithmetic of quantum entropy function. arXiv:0903.1477
  86. 86.
    W. Chemissany, J. Rosseel, M. Trigiante, T. Van Riet, The full integration of black hole solutions to symmetric supergravity theories. arXiv:0903.2777
  87. 87.
    P. Fré, A.S. Sorin, Supergravity black holes and billiards and Liouville integrable structure of dual Borel algebras. arXiv:0903.2559
  88. 88.
    P. Fré, A.S. Sorin, The integration algorithm for nilpotent orbits of G∕H lax systems: for extremal black holes. arXiv:0903.3771
  89. 89.
    W. Chemissany, P. Fré, A.S. Sorin, The integration algorithm of lax equation for both generic lax matrices and generic initial conditions. arXiv:0904.0801
  90. 90.
    A. Ceresole, S. Ferrara, A. Gnecchi, A. Marrani, More on N = 8 attractors. arXiv:0904.4506
  91. 91.
    H. Ooguri, A. Strominger, C. Vafa, Black hole attractors and the topological string. Phys. Rev. D 70, 106007 (2004). hep-th/0405146
  92. 92.
    H. Ooguri, C. Vafa, E. Verlinde, Hartle–Hawking wave-function for flux compactifications: the entropic principle. Lett. Math. Phys. 74, 311 (2005). hep-th/0502211 Google Scholar
  93. 93.
    M. Aganagic, A. Neitzke, C. Vafa, BPS microstates and the open topological string wave function. hep-th/0504054
  94. 94.
    S. Gukov, K. Saraikin, C. Vafa, The entropic principle and asymptotic freedom. Phys. Rev. D 73, 066010 (2006). hep-th/0509109
  95. 95.
    B. Pioline, Lectures on black holes, topological strings and quantum attractors. Lectures delivered at the RTN Winter School on Strings, Supergravity and Gauge Theories, Geneva, Switzerland, 16–20 Jan 2006. Class. Quant. Grav. 23, S981 (2006). hep-th/0607227
  96. 96.
    M. Günaydin, G. Sierra, P.K. Townsend, Exceptional supergravity theories and the magic square. Phys. Lett. B 133, 72 (1983)CrossRefMathSciNetADSGoogle Scholar
  97. 97.
    M. Günaydin, G. Sierra, P.K. Townsend, The geometry of N = 2 Maxwell–Einstein supergravity and Jordan algebras. Nucl. Phys. B 242, 244 (1984)CrossRefADSGoogle Scholar
  98. 98.
    M. Günaydin, G. Sierra, P.K. Townsend, Gauging the d = 5 Maxwell–Einstein supergravity theories: more on Jordan algebras. Nucl. Phys. B 253, 573 (1985)CrossRefADSGoogle Scholar
  99. 99.
    E. Cremmer, A. Van Proeyen, Classification of Kähler manifolds in N = 2 vector multiplet supergravity couplings. Class. Quant. Grav. 2, 445 (1985)zbMATHCrossRefADSGoogle Scholar
  100. 100.
    B. de Wit, F. Vanderseypen, A. Van Proeyen, Symmetry structures of special geometries. Nucl. Phys. B 400, 463 (1993). hep-th/9210068
  101. 101.
    J.F. Luciani, Coupling of O(2) supergravity with several vector multiplets. Nucl. Phys. B 132, 325 (1978)CrossRefMathSciNetADSGoogle Scholar
  102. 102.
    S. Cecotti, S. Ferrara, L. Girardello, Geometry of type II superstrings and the moduli of superconformal field theories. Int. J. Mod. Phys. A 4, 2475 (1989)zbMATHCrossRefMathSciNetADSGoogle Scholar
  103. 103.
    S. Ferrara, A. Marrani, Symmetric spaces in supergravity, in Proceedings of the Conference “Symmetry in Mathematics and Physics: Celebrating V.S. Varadarajan’s 70th Birthday”, Los Angeles, CA, USA, 18–20 Jan 2008. arXiv:0808.3567
  104. 104.
    M.J. Duff, J.T. Liu, J. Rahmfeld, Four-dimensional string–string–string triality. Nucl. Phys. B 459, 125 (1996). hep-th/9508094
  105. 105.
    K. Behrndt, R. Kallosh, J. Rahmfeld, M. Shmakova, W.K. Wong, STU black holes and string triality. Phys. Rev. D 54, 6293 (1996). hep-th/9608059
  106. 106.
    M.J. Duff, String triality, black hole entropy and Cayley’s hyperdeterminant. Phys. Rev. D 76, 025017 (2007). hep-th/0601134
  107. 107.
    R. Kallosh, A. Linde, Strings, black holes and quantum information. Phys. Rev. D 73, 104033 (2006). hep-th/0602061
  108. 108.
    P. Lévay, Stringy black holes and the geometry of entanglement. Phys. Rev. D 74, 024030 (2006). hep-th/0603136
  109. 109.
    P. Lévay, Strings, black holes, the tripartite entanglement of seven qubits and the Fano plane. Phys. Rev. D 75, 024024 (2007). hep-th/0610314
  110. 110.
    P. Lévay, A three-qubit interpretation of BPS and non-BPS STU black holes. Phys. Rev. D 76, 106011 (2007). arXiv:0708.2799
  111. 111.
    M.J. Duff, S. Ferrara, E 77 and the tripartite entanglement of seven qubits. Phys. Rev. D 76, 025018 (2007). quant-ph/0609227
  112. 112.
    M.J. Duff, S. Ferrara, in Black Hole Entropy and Quantum Information. Lecture Notes on Physics, vol. 755 (Springer, Berlin, 2008), p. 93. hep-th/0612036
  113. 113.
    M.J. Duff, S. Ferrara, E 66 and the bipartite entanglement of three qutrits. Phys. Rev. D 76, 124023 (2007). arXiv:0704.0507
  114. 114.
    L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, H. Ebrahim, Wrapped branes as qubits. Phys. Rev. Lett. 100, 251602 (2008). arXiv:0802.0840 Google Scholar
  115. 115.
    L. Borsten, D. Dahanayake, M. J. Duff, H. Ebrahim, W. Rubens, Black holes, qubits and octonions. Phys. Rep. 471, 113 (2009). arXiv:0809.4685 Google Scholar
  116. 116.
    L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, H. Ebrahim, Freudenthal triple classification of three-qubit entanglement. arXiv:0812.3322
  117. 117.
    L. Borsten, D. Dahanayake, M.J. Duff, W. Rubens, Black holes admitting a Freudenthal dual. arXiv:09035517.
  118. 118.
    P. Lévay, M. Saniga, P. Vrana, Three-qubit operators, the split cayley hexagon of order two and black holes. Phys. Rev. D 78, 124022 (2008). arXiv:0808.3849
  119. 119.
    P. Lévay, M. Saniga, P. Vrana, P. Pracna, Black hole entropy and finite geometry. arXiv:0903.0541
  120. 120.
    M. Saniga, P. Lévay, P. Pracna, P. Vrana, The Veldkamp space of GQ(2,4). arXiv:0903.0715
  121. 121.
    H. Freudenthal, Proc. Konink. Ned. Akad. Wetenschap A 62, 447 (1959)Google Scholar
  122. 122.
    B.A. Rozenfeld, Dokl. Akad. Nauk. SSSR 106, 600 (1956)zbMATHMathSciNetGoogle Scholar
  123. 123.
    J. Tits, Mem. Acad. Roy. Belg. Sci. 29, fasc. 3 (1955)Google Scholar
  124. 124.
    P. Jordan, J. Von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29 (1934)CrossRefGoogle Scholar
  125. 125.
    N. Jacobson, Ann. Math. Soc. Coll. Publ. 39 (1968)Google Scholar
  126. 126.
    M. Günaydin, Exceptional realizations of Lorentz group: supersymmetries and leptons. Nuovo Cimento A 29, 467 (1975)CrossRefADSGoogle Scholar
  127. 127.
    M. Günaydin, C. Piron, H. Ruegg, Moufang plane and octonionic quantum mechanics. Comm. Math. Phys. 61, 69 (1978)zbMATHCrossRefMathSciNetADSGoogle Scholar
  128. 128.
    A. Ceresole, R. D’Auria, S. Ferrara, The symplectic structure of N = 2 supergravity and its central extension. Talk given at ICTP Trieste Conference on Physical and Mathematical Implications of Mirror Symmetry in String Theory, Trieste, Italy, 5–9 June 1995. Nucl. Phys. Proc. Suppl. 46 (1996). hep-th/9509160
  129. 129.
    A. Ceresole, R. D’Auria, S. Ferrara, A. Van Proeyen, Duality transformations in supersymmetric Yang–Mills theories coupled to supergravity. Nucl. Phys. B 444, 92 (1995). hep-th/9502072
  130. 130.
    L. Andrianopoli, R. D’Auria, S. Ferrara, U Duality and central charges in various dimensions revisited. Int. J. Mod. Phys. A 13, 431 (1998). hep-th/9612105
  131. 131.
    R. Gilmore, Lie Groups, Lie Algebras, and Some of Their Applications (Dover, New York, 2006)Google Scholar
  132. 132.
    S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces (Academic, New York, 1978)zbMATHGoogle Scholar
  133. 133.
    M. Günaydin, M. Zagermann, Unified Maxwell–Einstein and Yang–Mills–Einstein supergravity theories in five dimensions. J. High Energy Phys. 0307, 023 (2003). hep-th/0304109
  134. 134.
    M. Günaydin, S. McReynolds, M. Zagermann, Unified N = 2 Maxwell–Einstein and Yang–Mills–Einstein supergravity theories in four dimensions. J. High Energy Phys. 0509, 026 (2005). hep-th/0507227
  135. 135.
    M. Günaydin, S. McReynolds, M. Zagermann, The R-map and the coupling of N = 2 tensor multiplets in 5 and 4 dimensions. J. High Energy Phys. 0601, 168 (2006). hep-th/0511025
  136. 136.
    L. Andrianopoli, R. D’Auria, S. Ferrara, U invariants, black hole entropy and fixed scalars. Phys. Lett. B 403, 12 (1997). hep-th/9703156

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Stefano Bellucci
    • 1
    Email author
  • Sergio Ferrara
  • Murat Günaydin
  • Alessio Marrani
  1. 1.INFN – Laboratori Nazionali di FrascatiFrascatiItaly

Personalised recommendations