Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 249))

Abstract

Evidential Markov chains (EMCs) are a generalization of classical Markov chains to the Dempster-Shafer theory, replacing the involved states by sets of states. They have been proposed recently in the particular field of an image segmentation application, as hidden models. With the aim to propose them as a more general tool, this paper explores new theoretical aspects about the conditioning of belief functions and the comparison to classical Markov chains and HMMs will be discussed. New computation tools based on matrices are proposed. The potential application domains seem promising in the information-based decision-support systems and an example is given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dubois, D., Moral, S., Prade, H.: Belief change rules in ordinal and numerical uncertainty theories. In: Dubois, H.P.D. (ed.) Belief Change, pp. 311–392. Kluwer, Dordrecht (1998)

    Google Scholar 

  2. Dubois, D., Prade, H.: A set theoretical view of belief functions. Int. J. Gen. Systems 12, 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  3. Fouque, L., Appriou, A., Pieczynski, W.: An evidential markovian model for data fusion and unsupervised image classification. In: Proc. of 3rd Int. Conf. on Information Fusion, FUSION 2000, Paris, France, pp. YuB4–25–TuB4–31 (2000)

    Google Scholar 

  4. Freedman, D.: Markov chains. Holden-Day (1971)

    Google Scholar 

  5. Grabisch, M., Murofushi, T., Sugeno, M.: Fuzzy Measures and Integrals. Physica-Verlag (2000)

    Google Scholar 

  6. Haenni, R.: Ignoring ignorance is ignorant. Technical report, Center for Junior Research Fellows, University of Konstanz (2003)

    Google Scholar 

  7. Lanchantin, P., Pieczynski, W.: Chaînes et arbres de markov évidentiels avec applications à la segmentation des processus non stationnaires. Revue Traitement du Signal 22 (2005)

    Google Scholar 

  8. McClelland, C.A.: World event/interaction survey codebook (icpsr 5211) inter-university consortium for political and social research, Ann Arbor (1976)

    Google Scholar 

  9. Nuel, G., Prum, B.: Analyse statistique des séquences biologiques. Editions Hermès, Labvoisier, Paris (2007)

    Google Scholar 

  10. Pieczynski, W.: Multisensor triplet markov chain and theory of evidence. Int. J. Approximate Reasoning 45, 1–16 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proc. of IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  12. Schrodt, P.A.: Forecasting conflict in the balkans using hidden markov model (2000)

    Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  14. Shafer, G.: Propagating belief functions in qualitative markov trees. Int. J. Approximate Reasoning 1, 349–400 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. Int. J. Approximate Reasoning 9, 1–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Smets, P.: The application of the matrix calculus to belief functions. Int. J. Approximate Reasoning 31, 1–30 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Soubaras, H.: An evidential measure of risk in evidential markov chains. In: Sossai, C., Chemello, G. (eds.) Symbolic and Qualitative Approaches to Reasoning with Uncertainty - 10th ECSQARU, Verona, Italy, pp. 863–874. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Soubaras, H., Mattioli, J.: Une approche markovienne pour la prévision du risque. In: Proc. of 7th Congrès int. Pluridisciplinaire Qualité et Sûreté de Fonctionnement, QUALITA 2007, Tanger, Maroc, pp. 64–71 (2007)

    Google Scholar 

  20. Xu, H., Smets, P.: Reasoning in evidential networks with conditional belief functions. Int. J. Approximate Reasoning 14, 155–185 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yaghlane, A.B., Denœux, T., Mellouli, K.: Coarsening approximations of belief functions. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, p. 362. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Yaghlane, B.B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. Int. J. Approximate Reasoning 48, 399–418 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Soubaras, H. (2010). On Evidential Markov Chains. In: Bouchon-Meunier, B., Magdalena, L., Ojeda-Aciego, M., Verdegay, JL., Yager, R.R. (eds) Foundations of Reasoning under Uncertainty. Studies in Fuzziness and Soft Computing, vol 249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10728-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10728-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10726-9

  • Online ISBN: 978-3-642-10728-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics