Skip to main content

Zusammenfassung

Die vielfältigen Anwendungsmöglichkeiten der Polymerasekettenreaktion (polymerase chain reaction, PCR) machen sie zu einer der wichtigsten und am häufigsten eingesetzten Methoden in der molekularbiologischen Forschung und Diagnostik. Für diese Technologie wurde der Erfinder der Methode, Kary Mullis, 1993 mit dem Nobelpreis ausgezeichnet. Die PCR erlaubt einen hochsensitiven und spezifischen in-vitro-Nachweis von Desoxyribonukleinsäuren (DNA), da im Zuge der Reaktion Sequenzabschnitte gezielt vermehrt werden. Innerhalb weniger Stunden können aus einem einzigen Zielmolekül 1012 identische Moleküle entstehen [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Lottspeich, F, Engels, JW (Hrsg.) (2006) Bioanalytik, 2. Aufl. Spektrum Akademischer Verlag.

    Google Scholar 

  2. Viljoen, GJ, Nel, LH, Crowther (2005) JR Molecular Diagnostic PCR Handbook, Springer Verlag.

    Google Scholar 

  3. Saiki, RK, Gelfand, DH, Stoffel, S, Scharf, SJ, Higuchi, R, Horn, GT, Mullis, KB, Erlich, HA (1998) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–91.

    Article  Google Scholar 

  4. Lundberg, KS, Shoemaker, DD, Adams, MW, Short, JM, Sorge, JA, Mathur, EJ (1991) High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus. Gene 108(1): 1–6.

    Article  CAS  Google Scholar 

  5. Higuchi, R, Fockler, C, Dollinger, G, Watson, R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnol 11: 1026–30.

    Article  CAS  Google Scholar 

  6. Mackay, IM, Mackay, JF, Nissen, MD, Sloots, TP (2007) Real-time PCR: History and Fluorogenic Chemistries in Real-Time PCR in Microbiology: From Diagnosis to Characterisation. Mackay, IM (Hrsg.), 1. Aufl., Caister Academic Press.

    Google Scholar 

  7. Wittwer, CT, Herrmann, MG, Moss, AA, Rasmussen, RP (1997) Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques 22: 130–1, 134–8.

    CAS  Google Scholar 

  8. Bustin, SA, Nolan, T (2004) Chemistries. In A-Z of Quantitative PCR. Bustin, S (Hrsg.), 1. Aufl. Int University Line.

    Google Scholar 

  9. Holland, PM, Abramson, RD, Watson, R, Gelfand, DH (1991) Detection of specific polymerase chain reaction product by utilizing the 5’––3’ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88(16): 7276–80.

    Article  CAS  Google Scholar 

  10. Thelwell, N, Millington, S, Solinas, A, Booth, J, Brown, T (2000) Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28: 3752–61.

    Article  CAS  Google Scholar 

  11. Afonina, I, Zivarts, M, Kutyavin, I, Lukhtanov, E, Gamper, H, Meyer, RB (1997) Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res 25: 2657–60.

    Article  CAS  Google Scholar 

  12. Kutyavin, IV, Afonina, IA, Mills, A, Gorn, VV, Lukhtanov, EA, Belousov, ES, Singer, MJ, Walburger, DK, Lokhov, SG, Gall, AA, Dempcy, R, Reed, MW, Meyer, RB, Hedgpeth, J (2000) 3′-minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28: 655–61.

    Article  CAS  Google Scholar 

  13. Levin, JD, Fiala, D, Samala, MF, Kahn, JD, Peterson, RJ (2006) Position-dependent effects of locked nucleic acid (LNA) on DNA sequencing and PCR primers. Nucleic Acids Res 34: 142.

    Article  Google Scholar 

  14. Karkare, S, Bhatnagar, D (2006) Promising nucleic acid analogs and mimics: characteristic features and applications of PNA, LNA, and morpholino. Appl Microbiol Biotechnol 71: 575–86.

    Article  CAS  Google Scholar 

  15. Buh Gasparic, M, Cankar, K, Zel, J, Gruden, K (2008) Comparison of different real-time PCR chemistries and their suitability for detection and quantification of genetically modified organisms. BMC Biotechnol 8: 26.

    Article  Google Scholar 

  16. Reynisson, E, Josefsen, MH, Krause, M, Hoorfar, J (2006) Evaluation of probe chemistries and platforms to improve the detection limit of real-time PCR. J Microbiol Methods 66: 206–16.

    Article  CAS  Google Scholar 

  17. Petersen, M, Wengel, J (2003) LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol 21: 74–81.

    Article  CAS  Google Scholar 

  18. Logan, J, Edwards, K, Saunders, N (Hrsg.) (2009) Real-Time PCR: Current Technology and Applications, 1. Aufl. Caister Academic Press.

    Google Scholar 

  19. Apfalter, P, Reischl, U, Hammerschlag, MR (2005) In-house nucleic acid amplification assays in research: how much quality control is needed before one can rely upon the results? J Clin Microbiol 43: 5835–41.

    Article  CAS  Google Scholar 

  20. Roth, A, Mauch, H, Göbel, UB (2001) Nukleinsäureamplifikationstechniken in MiQ 01 Qualitätsstandards in der mikrobiologisch-infektiologischen Diagnostik, Urban & Fischer, München.

    Google Scholar 

  21. Hoorfar, J, Malorny, B, Abdulmawjood, A, Cook, N, Wagner, M, Fach, P (2004) Practical considerations in design of internal amplification controls for diagnostic PCR assays. J Clin Microbiol 42: 1863–8.

    Article  CAS  Google Scholar 

  22. Anderson, A, Pietsch, K, Zucker, R, Mayr, A, Müller-Hohe, E, Messelhäusser, U, Sing, A, Busch, U, Huber, I (2010) Validation of a duplex-PCR for the detection of Salmonella spp in different food products. Food Analytical Methods, DOI 10.1007/s12161-010-9142-8.

    Google Scholar 

  23. Hoffmann, B, Depner, K, Schirrmeier, H, Beer, M (2006) A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J Virol Methods 136: 200–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Regina Konrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Konrad, R., Busch, U. (2010). PCR und Real-Time PCR. In: Busch, U. (eds) Molekularbiologische Methoden in der Lebensmittelanalytik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10716-0_4

Download citation

Publish with us

Policies and ethics