Skip to main content

Tandem Mass Spectrometry

  • Chapter
  • First Online:
Mass Spectrometry

Abstract

Electron ionization mass spectra show a wealth of fragment ion peaks allowing to retrieve structural information, often though at the expense of abundance of the molecular ion. For decades, EI has served as the one and only ionization method of organic mass spectrometry. With the advent of soft ionization methods such as CI or FD we just dealt with, spectra exhibiting minor or even no fragment ion signals could be generated. While highly advantageous at first sight, in the long run, the lack of structural information presents a severe drawback for analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tandem Mass Spectrometry; McLafferty, F.W. (ed.); Wiley: New York, 1983.

    Google Scholar 

  2. Busch, K.L.; Glish, G.L.; McLuckey, S.A. Mass Spectrometry/Mass Spectrometry; Wiley VCH: New York, 1988.

    Google Scholar 

  3. Schalley, C.A.; Springer, A. Mass Spectrometry and Gas-Phase Chemistry of Non-Covalent Complexes; Wiley: Hoboken, 2009.

    Google Scholar 

  4. Johnson, J.V.; Yost, R.A.; Kelley, P.E.; Bradford, D.C. Tandem-in-Space and Tandem-in-Time Mass Spectrometry: Triple Quadrupoles and Quadrupole Ion Traps. Anal. Chem. 1990, 62, 2162-2172.

    CAS  Google Scholar 

  5. Kaufmann, R.; Kirsch, D.; Spengler, B. Sequencing of Peptides in a Time-of- Flight Mass Spectrometer: Evaluation of Postsource Decay Following Matrix- Assisted Laser Desorption Ionization (MALDI). Int. J. Mass Spectrom. Ion Proc. 1994, 131, 355-385.

    CAS  Google Scholar 

  6. Glish, G.L. Multiple Stage Mass Spectrometry: the Next Generation Tandem Mass Spectrometry Experiment. Analyst 1994, 119, 533-537.

    CAS  Google Scholar 

  7. Glish, G. Letter to the Editor [Concerning Terms in Mass Spectrometry]. J. Am. Soc. Mass Spectrom. 1991, 2, 349.

    CAS  Google Scholar 

  8. Thorne, G.C.; Ballard, K.D.; Gaskell, S.J. Metastable Decomposition of Peptide [M+H]+ Ions Via Rearrangement Involving Loss of C-Terminal Amino Acid Residue. J. Am. Soc. Mass Spectrom. 1990, 1, 249-257.

    CAS  Google Scholar 

  9. Louris, J.N.; Wright, L.G.; Cooks, R.G.; Schoen, A.E. New Scan Modes Ac cessed With a Hybrid Mass Spectrometer. Anal. Chem. 1985, 57, 2918-2924.

    CAS  Google Scholar 

  10. Glish, G.L.; Burinsky, D.J. Hybrid Mass Spectrometers for Tandem Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2008, 19, 161-172.

    CAS  Google Scholar 

  11. Lehmann, W.D. Pictograms for Experimental Parameters in Mass Spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 756-759.

    CAS  Google Scholar 

  12. Cooks, R.G.; Beynon, J.H.; Caprioli, R.M. Metastable Ions; Elsevier: Amsterdam, 1973.

    Google Scholar 

  13. Cooks, R.G.; Beynon, J.H.; Caprioli, R.M. Metastable Ions; Elsevier: Amsterdam, 1973.

    Google Scholar 

  14. Levsen, K. Fundamental Aspects of Organic Mass Spectrometry; Verlag Chemie: Weinheim, 1978.

    Google Scholar 

  15. McLafferty, F.W.; Bente, P.F.I.; Kornfeld, R.; Tsai, S.-C.; Howe, I. Collisional Activation Spectra of Organic Ions. J. Am. Chem. Soc. 1973, 95, 2120-2129.

    CAS  Google Scholar 

  16. Levsen, K.; Schwarz, H. Collisional Activation Mass Spectrometry – A New Probe for Structure Determination of Ions in the Gaseous Phase. Angew. Chem. 1976, 88, 589-601.

    CAS  Google Scholar 

  17. Holmes, J.L. Assigning Structures to Ions in the Gas Phase. Org. Mass Spectrom. 1985, 20, 169-183.

    CAS  Google Scholar 

  18. Levsen, K.; Schwarz, H. Gas-Phase Chemistry of Collisionally Activated Ions. Mass Spectrom. Rev. 1983, 2, 77-148.

    CAS  Google Scholar 

  19. Bordas-Nagy, J.; Jennings, K.R. Collision- Induced Decomposition of Ions. Int. J. Mass Spectrom. Ion Proc. 1990, 100, 105-131.

    CAS  Google Scholar 

  20. McLuckey, S.A. Principles of Collisional Activation in Analytical Mass Spectrometry. J. Am. Chem. Soc. Mass Spectrom. 1992, 3, 599-614.

    CAS  Google Scholar 

  21. Shukla, A.K.; Futrell, J.H. Tandem Mass Spectrometry: Dissociation of Ions by Collisional Activation. J. Mass Spectrom. 2000, 35, 1069-1090.

    CAS  Google Scholar 

  22. Guevremont, R.; Boyd, R.K. Are Derrick Shifts Real? An Investigation by Tandem Mass Spectrometry. Rapid. Commun. Mass Spectrom. 1988, 2, 1-5.

    CAS  Google Scholar 

  23. Bradley, C.D.; Derrick, P.J. Collision- Induced Decomposition of Peptides. An Investigation into the Effect of Collision Gas Pressure on Translational Energy Losses. Org. Mass Spectrom. 1991, 26, 395-401.

    CAS  Google Scholar 

  24. Bradley, C.D.; Derrick, P.J. Collision- Induced Decomposition of Large Organic Ions and Inorganic Cluster Ions. Effects of Pressure on Energy Losses. Org. Mass Spectrom. 1993, 28, 390-394.

    CAS  Google Scholar 

  25. Neumann, G.M.; Sheil, M.M.; Derrick, P.J. Collision-Induced Decomposition of Multiatomic Ions. Z. Naturforsch. 1984, 39A, 584-592.

    CAS  Google Scholar 

  26. Alexander, A.J.; Thibault, P.; Boyd, R.K. Target Gas Excitation in Collision- Induced Dissociation: A Reinvestigation of Energy Loss in Collisional Activation of Molecular Ions of Chlorophyll-a. J. Am. Chem. Soc. 1990, 112, 2484-2491.

    CAS  Google Scholar 

  27. Kim, B.J.; Kim, M.S. Peak Shape Analysis for Collisionally Activated Dissociation in Mass-Analyzed Ion Kinetic Energy Spectrometry. Int. J. Mass Spectrom. Ion Proc. 1990, 98, 193-207.

    CAS  Google Scholar 

  28. Vékey, K.; Czira, G. Large Translational Energy Loss and Scattering in Collision- Induced Dissociation Processes. Org. Mass Spectrom. 1993, 28, 546-551.

    Google Scholar 

  29. Wysocki, V.H.; Kenttämaa, H.; Cooks, R.G. Internal Energy Distributions of Isolated Ions After Activation by Various Methods. Int. J. Mass Spectrom. Ion Proc. 1987, 75, 181-208.

    CAS  Google Scholar 

  30. Bradley, C.D.; Curtis, J.M.; Derrick, P.J.; Wright, B. Tandem Mass Spectrometry of Peptides Using a Magnetic Sector/Quadrupole Hybrid – The Case for Higher Collision Energy and Higher Radio-Frequency Power. Anal. Chem. 1992, 64, 2628-2635.

    CAS  Google Scholar 

  31. McLuckey, S.A.; Goeringer, D.E. Slow Heating Methods in Tandem Mass Spectrometry. J. Mass Spectrom. 1997, 32, 461-474.

    CAS  Google Scholar 

  32. Mabud, Md.A.; Dekrey, M.J.; Cooks, R.G. Surface-Induced Dissociation of Molecular Ions. Int. J. Mass Spectrom. Ion Proc. 1985, 67, 285-294.

    CAS  Google Scholar 

  33. Cooks, R.G.; Hoke, S.H., II; Morand, K.L.; Lammert, S.A. Mass Spectrometers: Instrumentation. Int. J. Mass Spectrom. Ion Proc. 1992, 118-119, 1-36.

    CAS  Google Scholar 

  34. Bier, M.E.; Amy, J.W.; Cooks, R.G.; Syka, J.E.P.; Ceja, P.; Stafford, G. A Tandem Quadrupole Mass Spectrometer for the Study of Surface-Induced Dissociation. Int. J. Mass Spectrom. Ion Proc. 1987, 77, 31-47.

    CAS  Google Scholar 

  35. Wysocki, V.H.; Ding, J.-M.; Jones, J.L.; Callahan, J.H.; King, F.L. Surface- Induced Dissociation in Tandem Quad rupole Mass Spectrometers: a Comparison of Three Designs. J. Am. Chem. Soc. Mass Spectrom. 1992, 3, 27-32.

    CAS  Google Scholar 

  36. Dongré, A.R.; Somogyi, A.; Wysocki, V.H. Surface-Induced Dissociation: an Effective Tool to Probe Structure, Energetics and Fragmentation Mechanisms of Protonated Peptides. J. Mass Spectrom. 1996, 31, 339-350.

    Google Scholar 

  37. Lammert, S.A.; Cooks, R.G. Surface- Induced Dissociation of Molecular Ions in a Quadrupole Ion Trap Mass Spectrometer. J. Am. Chem. Soc. Mass Spectrom. 1991, 2, 487-491.

    CAS  Google Scholar 

  38. Spengler, B.; Kirsch, D.; Kaufmann, R.; Jaeger, E. Peptide Sequencing by Matrix- Assisted Laser-Desorption Mass Spectrometry. Rapid Commun. Mass Spectrom. 1992, 6, 105-108.

    CAS  Google Scholar 

  39. Boesl, U.; Weinkauf, R.; Schlag, E. Reflectron Time-of-Flight Mass Spectrometry and Laser Excitation for the Analysis of Neutrals, Ionized Molecules and Secondary Fragments. Int. J. Mass Spectrom. Ion Proc. 1992, 112, 121-166.

    CAS  Google Scholar 

  40. Bradbury, N.E.; Nielsen, R.A. Absolute Values of the Electron Mobility in Hydrogen. Phys. Rev. 1936, 49, 388-393.

    CAS  Google Scholar 

  41. Tang, X.; Ens, W.; Standing, K.G.; Westmore, J.B. Daughter Ion Mass Spectra from Cationized Molecules of Small Oligopeptides in a Reflecting Time-of-Flight Mass Spectrometer. Anal. Chem. 1988, 60, 1791-1799.

    CAS  Google Scholar 

  42. Tang, X.; Ens, W.; Mayer, F.; Standing, K.G.; Westmore, J.B. Measurement of Unimolecular Decay in Peptides of Masses Greater Than 1200 Units by a Reflecting Time-of-Flight Mass Spectrometer. Rapid Commun. Mass Spectrom. 1989, 3, 443-448.

    CAS  Google Scholar 

  43. Schueler, B.; Beavis, R.; Ens, W.; Main, D.E.; Tang, X.; Standing, K.G. Unimolecular Decay Measurements of Secondary Ions From Organic Molecules by Time-of-Flight Mass Spectrometry. Int. J. Mass Spectrom. Ion Proc. 1989, 92, 185-194.

    CAS  Google Scholar 

  44. Brunelle, A.; Della-Negra, S.; Depauw, J.; Joret, H.; LeBeyec, Y. Time-of-Flight Mass Spectrometry With a Compact Two-Stage Electrostatic Mirror: Metastable- Ion Studies With High Mass Resolution and Ion Emission From Thick Insulators. Rapid Commun. Mass Spectrom. 1991, 5, 40-43.

    CAS  Google Scholar 

  45. Cornish, T.J.; Cotter, R.J. A Curved- Field Reflectron for Improved Energy Focusing of Product Ions in Time-of- Flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1993, 7, 1037-1040.

    CAS  Google Scholar 

  46. Cornish, T.J.; Cotter, R.J. A Curved Field Reflection Time-of-Flight Mass Spectrometer for the Simultaneous Focusing of Metastable Product Ions. Rapid Commun. Mass Spectrom. 1994, 8, 781-785.

    CAS  Google Scholar 

  47. Cordero, M.M.; Cornish, T.J.; Cotter, R.J.; Lys, I.A. Sequencing Peptides Without Scanning the Reflectron: Post- Source Decay With a Curved-Field Reflectron Time-of-Flight Spectrometer. Rapid Commun. Mass Spectrom. 1995, 9, 1356-1361.

    CAS  Google Scholar 

  48. Cotter, R.J.; Gardner, B.D.; Iltchenko, S.; English, R.D. Tandem Time-of- Flight Mass Spectrometry with a Curved Field Reflectron. Anal. Chem. 2004, 76, 1976-1981.

    CAS  Google Scholar 

  49. Giannakopulos, A.E.; Thomas, B.; Colburn, A.W.; Reynolds, D.J.; Raptakis, E.N.; Makarov, A.A.; Derrick, P.J. Tandem Time-of-Flight Mass Spectrometer (TOF-TOF) With a Quadratic- Field Ion Mirror. Rev. Sci. Instrum. 2002, 73, 2115-2123.

    CAS  Google Scholar 

  50. Yergey, A.L.; Coorssen, J.R.; Backlund, P.S.; Blank, P.S.; Humphrey, G.A.; Zimmerberg, J.; Campbell, J.M.; Vestal, M.L. De Novo Sequencing of Peptides Using MALDI/TOF-TOF. J. Am. Soc. Mass Spectrom. 2002, 13, 784-791.

    CAS  Google Scholar 

  51. Schnaible, V.; Wefing, S.; Resemann, A.; Suckau, D.; Bücker, A.; Wolf- Kümmeth, S.; Hoffmann, D. Screening for Disulfide Bonds in Proteins by MALDI in-Source Decay and LIFTTOF/ TOF-MS. Anal. Chem. 2002, 74, 4980-4988.

    CAS  Google Scholar 

  52. Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. A Novel MALDI LIFTTOF/ TOF Mass Spectrometer for Proteomics. Anal. Bioanal Chem. 2003, 376, 952-965.

    CAS  Google Scholar 

  53. Moneti, G.; Francese, S.; Mastrobuoni, G.; Pieraccini, G.; Seraglia, R.; Valitutti, G.; Traldi, P. Do Collisions Inside the Collision Cell Play a Relevant Role in CID-LIFT Experiments? J. Mass Spectrom. 2007, 42, 117-126.

    CAS  Google Scholar 

  54. Hipple, J.A. Detection of Metastable Ions With the Mass Spectrometer. Phys. Rev. 1945, 68, 54-55.

    CAS  Google Scholar 

  55. Hipple, J.A.; Fox, R.E.; Condon, E.U. Metastable Ions Formed by Electron Impact in Hydrocarbon Gases. Phys. Rev. 1946, 69, 347-356.

    CAS  Google Scholar 

  56. Beynon, J.H.; Saunders, R.A.; Williams, A.E. Formation of Metastable Ions in Mass Spectrometers With Release of Internal Energy. Z. Naturforsch. 1965, 20A, 180-183.

    CAS  Google Scholar 

  57. Beynon, J.H.; Cooks, R.G.; Amy, J.W.; Baitinger, W.E.; Ridley, T.Y. Design and Performance of a Mass-Analyzed Ion Kinetic Energy (MIKE) Spectrometer. Anal. Chem. 1973, 45, 1023A.

    Google Scholar 

  58. Amy, J.W.; Baitinger, W.E.; Cooks, R.G. Building Mass Spectrometers and a Philosophy of Research. J. Am. Soc. Mass Spectrom. 1990, 1, 119-128.

    CAS  Google Scholar 

  59. Ottinger, C. Fragmentation Energies of Metastable Organic Ions. Phys. Lett. 1965, 17, 269-271.

    CAS  Google Scholar 

  60. Baldwin, M.A.; Derrick, P.J.; Morgan, R.P. Correction of Metastable Peak Shapes to Allow for Instrumental Broadening and the Translational Energy Spread of the Parent Ion. Org. Mass Spectrom. 1976, 11, 440-442.

    CAS  Google Scholar 

  61. Gross, J.H.; Veith, H.J. Unimolecular Fragmentations of Long-Chain Aliphatic Iminium Ions. Org. Mass Spectrom. 1993, 28, 867-872.

    CAS  Google Scholar 

  62. Bowen, R.D.; Wright, A.D.; Derrick, P.J. Unimolecular Reactions of Ionized Methyl Allyl Ether. Org. Mass Spectrom. 1992, 27, 905-915.

    CAS  Google Scholar 

  63. Cao, J.R.; George, M.; Holmes, J.L. Fragmentation of 1- and 3-Methoxypropene Ions. Another Part of the [C4H8O]+. Cation Radical Potential Energy Surface. J. Am. Chem. Soc. Mass Spectrom. 1992, 3, 99-107.

    CAS  Google Scholar 

  64. Gross, J.H.; Veith, H.J. Unimolecular Fragmentations of Long-Chain Aliphatic Iminium Ions. Org. Mass Spectrom. 1993, 28, 867-872.

    CAS  Google Scholar 

  65. Millington, D.S.; Smith, J.A. Fragmentation Patterns by Fast Linked Electric and Magnetic Field Scanning. Org. Mass Spectrom. 1977, 12, 264-265.

    CAS  Google Scholar 

  66. Morgan, R.P.; Porter, C.J.; Beynon, J.H. On the Formation of Artefact Peaks in Linked Scans of the Magnet and Electric Sector Fields in a Mass Spectrometer. Org. Mass Spectrom. 1977, 12, 735-738.

    CAS  Google Scholar 

  67. Lacey, M.J.; Macdonald, C.G. The Use of Two Linked Scanning Modes in Alternation to Analyze Metastable Peaks. Org. Mass Spectrom. 1980, 15, 134-137.

    CAS  Google Scholar 

  68. Lacey, M.J.; Macdonald, C.G. Interpreting Metastable Peaks From Double Focusing Mass Spectrometers. Org. Mass Spectrom. 1980, 15, 484-485.

    CAS  Google Scholar 

  69. Mouget, Y.; Bertrand, M.J. Graphical Method for Artefact Peak Interpretation, and Methods for Their Rejection, Using Double and Triple Sector Magnetic Mass Spectrometers. Rapid Commun. Mass Spectrom. 1995, 9, 387-396.

    CAS  Google Scholar 

  70. Evers, E.A.I.M.; Noest, A.J.; Akkerman, O.S. Deconvolution of Composite Metastable Peaks: a New Method for the Determination of Metastable Transitions Occurring in the First Field Free Region. Org. Mass Spectrom. 1977, 12, 419-420.

    CAS  Google Scholar 

  71. Boyd, R.K.; Porter, C.J.; Beynon, J.H. A New Linked Scan for Reversed Geometry Mass Spectrometers. Org. Mass Spectrom. 1981, 16, 490-494.

    CAS  Google Scholar 

  72. Lacey, M.J.; Macdonald, C.G. Constant Neutral Spectrum in Mass Spectrometry. Anal. Chem. 1979, 51, 691-695.

    CAS  Google Scholar 

  73. Boyd, R.K.; Beynon, J.H. Scanning of Sector Mass Spectrometers to Observe the Fragmentations of Metastable Ions. Org. Mass Spectrom. 1977, 12, 163-165.

    CAS  Google Scholar 

  74. Jennings, K.R. Scanning Methods for Double-Focusing Mass Spectrometers, Almoster Ferreira, M.A. (ed.); Reidel: Dordrecht, 1984; Chap. 118, pp. 7-21.

    Google Scholar 

  75. Fraefel, A.; Seibl, J. Selective Analysis of Metastable Ions. Mass Spectrom. Rev. 1984, 4, 151-221.

    Google Scholar 

  76. Boyd, R.K. Linked-Scan Techniques for MS/MS Using Tandem-in-Space Instruments. Mass Spectrom. Rev. 1994, 13, 359-410.

    CAS  Google Scholar 

  77. Walther, H.; Schlunegger, U.P.; Friedli, F. Quantitative Determination of Compounds in Mixtures by B2E = Const. Linked Scans. Org. Mass Spectrom. 1983, 18, 572-575.

    CAS  Google Scholar 

  78. Futrell, J.H. Development of Tandem Mass Spectrometry. One Perspective. Int. J. Mass Spectrom. 2000, 200, 495-508.

    CAS  Google Scholar 

  79. Fenselau, C. Tandem Mass Spectrometry: the Competitive Edge for Pharmacology. Ann. Rev. Pharmacol. Toxicol. 1992, 32, 555-578.

    CAS  Google Scholar 

  80. Srinivas, R.; Sülzle, D.; Weiske, T.; Schwarz, H. Generation and Characteri zation of Neutral and Cationic 3-Silacyclopropenylidene in the Gas Phase. Description of a New BEBE Tandem Mass Spectrometer. Int. J. Mass Spectrom. Ion Proc. 1991, 107, 369-376.

    CAS  Google Scholar 

  81. Bordaz-Nagy, J.; Despeyroux, D.; Jennings, K.R.; Gaskell, S.J. Experimental Aspects of the Collision-Induced Decomposition of Ions in a Four-Sector Tandem Mass Spectrometer. Org. Mass Spectrom. 1992, 27, 406-415.

    Google Scholar 

  82. Stults, J.T.; Lai, J.; McCune, S.; Wetzel, R. Simplification of High-Energy Collision Spectra of Peptides by Amino- Terminal Derivatization. Anal. Chem. 1993, 65, 1703-1708.

    CAS  Google Scholar 

  83. Biemann, K.; Papyannopoulos, I.A. Amino Acid Sequencing of Proteins. Acc. Chem. Res. 1994, 27, 370-378.

    CAS  Google Scholar 

  84. Papyannopoulos, I.A. The Interpretation of Collision-Induced Dissociation Tandem Mass Spectra of Peptides. Mass Spectrom. Rev. 1995, 14, 49-73.

    Google Scholar 

  85. Lehmann, W.D. Massenspektrometrie in der Biochemie; Spektrum Akad. Verlag: Heidelberg, 1996.

    Google Scholar 

  86. Mass Spectrometry of Proteins and Peptides; Chapman, J.R. (ed.); Humana Press: Totowa, 2000.

    Google Scholar 

  87. Snyder, A.P. Interpreting Protein Mass Spectra; Oxford Univ. Press: New York, 2000.

    Google Scholar 

  88. Kinter, M.; Sherman, N.E. Protein Sequencing and Identification Using Tandem Mass Spectrometry; Wiley: Chichester, 2000.

    Google Scholar 

  89. Yost, R.A.; Enke, C.G. Selected Ion Fragmentation With a Tandem Quadrupole Mass Spectrometer. J. Am. Chem. Soc. 1978, 100, 2274-2275.

    CAS  Google Scholar 

  90. Yost, R.A.; Enke, C.G.; McGilvery, D.C.; Smith, D.; Morrison, J.D. High Efficiency Collision-Induced Dissociation in an Rf-Only Quadrupole. Int. J. Mass Spectrom. Ion Phys. 1979, 30, 127-136.

    CAS  Google Scholar 

  91. Yost, R.A.; Enke, C.G. Triple Quadrupole Mass Spectrometry for Direct Mixture Analysis and Structure Elucidation. Anal. Chem. 1979, 51, 1251A–1262A.

    CAS  Google Scholar 

  92. Hunt, D.F.; Shabanowitz, J.; Giordani, A.B. Collision Activated Decompositions in Mixture Analysis With a Triple Quadrupole Mass Spectrometer. Anal. Chem. 1980, 52, 386-390.

    CAS  Google Scholar 

  93. Dawson, P.H.; French, J.B.; Buckley, J.A.; Douglas, D.J.; Simmons, D. The Use of Triple Quadrupoles for Sequential Mass Spectrometry: The Instrument Parameters. Org. Mass Spectrom. 1982, 17, 205-211.

    CAS  Google Scholar 

  94. Dawson, P.H.; French, J.B.; Buckley, J.A.; Douglas, D.J.; Simmons, D. The Use of Triple Quadrupoles for Sequential Mass Spectrometry: A Detailed Case Study. Org. Mass Spectrom. 1982, 17, 212-219.

    CAS  Google Scholar 

  95. Inglebert, R.L.; Hennequin, J.F. Overall Transmission of Quadrupole Mass Spectrometers. Adv. Mass Spectrom. 1980, 8B, 1764-1770.

    CAS  Google Scholar 

  96. Cerezo, A.; Miller, M.K. Einzel Lenses in Atom Probe Designs. Surface Sci. 1991, 246, 450-456.

    CAS  Google Scholar 

  97. Thomson, B.A.; Douglas, D.J.; Corr, J.J.; Hager, J.W.; Jolliffe, C.L. Improved Collisionally Activated Dissociation Efficiency and Mass Resolution on a Triple Quadrupole Mass Spectrometer System. Anal. Chem. 1995, 67, 1696-1704.

    CAS  Google Scholar 

  98. Zeller, M.; Koenig, S. The Impact of Chromatography and Mass Spectrometry on the Analysis of Protein Phosphorylation Sites. Mass Spectrometric Phosphorylation Analysis. Anal. Bioanal. Chem. 2004, 379, 318.

    CAS  Google Scholar 

  99. Schwartz, J.C.; Schey, K.L.; Cooks, R.G. A Penta-Quadrupole Instrument for Reaction Intermediate Scans and Other MS-MS-MS Experiments. Int. J. Mass Spectrom. Ion Proc. 1990, 101, 1-20.

    CAS  Google Scholar 

  100. Gozzo, F.C.; Sorrilha, A.E.P.M.; Eberlin, M.N. The Generation, Stability, Dissociation and Ion/Molecule Chemistry of Sulfinyl Cations in the Gas Phase. J. Chem. Soc., Perkin Trans. 2 1995, 587-596.

    Google Scholar 

  101. Juliano, V.F.; Gozzo, F.C.; Eberlin, M.N.; Kascheres, C.; do Lago, C.L. Fast Multidimensional (3D and 4D) MS2 and MS3 Scans in a High-Transmission Pentaquadrupole Mass Spectrometer. Anal. Chem. 1996, 68, 1328-1334.

    CAS  Google Scholar 

  102. Eberlin, M.N. Triple-Stage Pentaquadrupole (QqQqQ) Mass Spectrometry and Ion/Molecule Reactions. Mass Spectrom. Rev. 1997, 16, 113-144.

    CAS  Google Scholar 

  103. March, R.E. Quadrupole Ion Trap Mass Spectrometry: Theory, Simulation, Recent Developments and Applications. Rapid Commun. Mass Spectrom. 1998, 12, 1543-1554.

    CAS  Google Scholar 

  104. Griffiths, I.W. Recent Advances in Ion- Trap Technology. Rapid Commun. Mass Spectrom. 1990, 4, 69-73.

    CAS  Google Scholar 

  105. Siethoff, C.; Wagner-Redeker, W.; Schäfer, M.; Linscheid, M. HPLC-MS with an Ion Trap Mass Spectrometer. Chimia 1999, 53, 484-491.

    CAS  Google Scholar 

  106. Schwartz, J.C.; Jardine, I. High-Resolution Parent-Ion Selection/Isolation Using a Quadrupole Ion-Trap Mass Spectrometer. Rapid Commun. Mass Spectrom. 1992, 6, 313-317.

    CAS  Google Scholar 

  107. Remes, P.M.; Glish, G.L. On the Time Scale of Internal Energy Relaxation of AP-MALDI and Nano-ESI Ions in a Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2009, 20, 1801-1812.

    CAS  Google Scholar 

  108. Louris, J.N.; Cooks, R.G.; Syka, J.E.P.; Kelley, P.E.; Stafford, G.C., Jr.; Todd, J.F.J. Instrumentation, Applications, and Energy Deposition in Quadrupole Ion- Trap Tandem Mass Spectrometry. Anal. Chem. 1987, 59, 1677-1685.

    CAS  Google Scholar 

  109. McLuckey, S.A.; Glish, G.L.; Kelley, P.E. Collision-Activated Dissociation of Negative Ions in an Ion Trap Mass Spectrometer. Anal. Chem. 1987, 59, 1670-1674.

    CAS  Google Scholar 

  110. Cooks, R.G.; Amy, J.W.; Bier, M.; Schwartz, J.C.; Schey, K. New Mass Spectrometers, 1989; Chap. 11A, pp. 33-52.

    Google Scholar 

  111. Murrell, J.; Konn, D.O.; Underwood, N.J.; Despeyroux, D. Studies into the Selective Accumulation of Multiply Charged Protein Ions in a Quadrupole Ion Trap Mass Spectrometer. Int. J. Mass Spectrom. 2003, 227, 223-234.

    CAS  Google Scholar 

  112. Hashimoto, Y.; Hasegawa, H.; Yoshinari, K. Collision-Activated Infrared Multiphoton Dissociation in a Quadrupole Ion Trap Mass Spectrometer. Anal. Chem. 2003, 75, 420-425.

    CAS  Google Scholar 

  113. March, R.E.; Todd, J.F.J. Quadrupole Ion Trap Mass Spectrometry; Wiley: Hoboken, 2005.

    Google Scholar 

  114. Kuzma, M.; Jegorov, A.; Kacer, P.; Havlícek, V. Sequencing of New Beauverolides by High-Performance Liquid Chromatography and Mass Spectrometry. J. Mass Spectrom. 2001, 36, 1108-1115.

    CAS  Google Scholar 

  115. Hopfgartner, G.; Husser, C.; Zell, M. Rapid Screening and Characterization of Drug Metabolites Using a New Quadrupole- Linear Ion Trap Mass Spectrometer. J. Mass Spectrom. 2003, 38, 138-150.

    CAS  Google Scholar 

  116. Pekar Second, T.; Blethrow, J.D.; Schwartz, J.C.; Merrihew, G.E.; Mac- Coss, M.J.; Swaney, D.L.; Russell, J.D.; Coon, J.J.; Zabrouskov, V. Dual- Pressure Linear Ion Trap Mass Spectrometer Improving the Analysis of Complex Protein Mixtures. Anal. Chem. 2009, 81, 7757-7765.

    CAS  Google Scholar 

  117. Magparangalan, D.P.; Garrett, T.J.; Drexler, D.M.; Yost, R.A. Analysis of Large Peptides by MALDI Using a Linear Quadrupole Ion Trap With Mass Range Extension. Anal. Chem. 2010, 82, 930-934.

    CAS  Google Scholar 

  118. Londry, F.A.; Hager, J.W. Mass Selective Axial Ion Ejection From a Linear Quadrupole Ion Trap. J. Am. Soc. Mass Spectrom. 2003, 14, 1130-1147.

    CAS  Google Scholar 

  119. Hopfgartner, G.; Varesio, E.; Tschaeppaet, V.; Grivet, C.; Bourgogne, E.; Leuthold, L.A. Triple Quadrupole Linear Ion Trap Mass Spectrometer for the Analysis of Small Molecules and Macromolecules. J. Mass Spectrom. 2004, 39, 845-855.

    CAS  Google Scholar 

  120. Moberg, M.; Markides, K.E.; Bylund, D. Multi-Parameter Investigation of Tandem Mass Spectrometry in a Linear Ion Trap Using Response Surface Modelling. J. Mass Spectrom. 2005, 40, 317-324.

    CAS  Google Scholar 

  121. Olsen, J.V.; Schwartz, J.C.; Griep- Raming, J.; Nielsen, M.L.; Damoc, E.; Denisov, E.; Lange, O.; Remes, P.; Taylor, D.; Splendore, M.; Wouters, E.R.; Senko, M.; Makarov, A.; Mann, M.; Horning, S. A Dual Pressure Linear Ion Trap Orbitrap Instrument With Very High Sequencing Speed. Mol. Cell. Proteomics 2009, 8, 2759-2769.

    CAS  Google Scholar 

  122. Olsen, J.V.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M. Higher-Energy C-Trap Dissociation for Peptide Modification Analysis. Nature Methods 2007, 4, 709-712.

    CAS  Google Scholar 

  123. Olsen, J.V.; de Godoy, L.M.F.; Li, G.; Macek, B.; Mortensen, P.; Pesch, R.; Makarov, A.; Lange, O.; Horning, S.; Mann, M. Parts Per Million Mass Accuracy on an Orbitrap Mass Spectrometer Via Lock Mass Injection into a C-Trap. Mol. Cell. Proteomics 2005, 4, 2010-2021.

    CAS  Google Scholar 

  124. Guan, S.; Marshall, A.G. Stored Waveform Inverse Fourier Transform (SWIFT) Ion Excitation in Trapped-Ion Mass Spectrometry: Theory and Applications. Int. J. Mass Spectrom. Ion Proc. 1996, 157/158, 5-37.

    CAS  Google Scholar 

  125. Heck, A.J.R.; Derrick, P.J. Ultrahigh Mass Accuracy in Isotope-Selective Collision- Induced Dissociation Using Correlated Sweep Excitation and Sustained Off-Resonance Irradiation: A FT-ICRMS Case Study on the [M+2H]2+ Ion of Bradykinin. Anal. Chem. 1997, 69, 3603-3607.

    CAS  Google Scholar 

  126. Heck, A.J.R.; Derrick, P.J. Selective Fragmentation of Single Isotopic Ions of Proteins Up to 17 KDa Using 9.4 Tesla Fourier Transform Ion Cyclotron Resonance. Eur. Mass Spectrom. 1998, 4, 181-188.

    CAS  Google Scholar 

  127. Cody, R.B.; Freiser, B.S. Collision- Induced Dissociation in a Fourier- Transform Mass Spectrometer. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 199-204.

    CAS  Google Scholar 

  128. Cody, R.B.; Burnier, R.C.; Freiser, B.S. Collision-Induced Dissociation With Fourier Transform Mass Spectrometry. Anal. Chem. 1982, 54, 96-101.

    CAS  Google Scholar 

  129. Gauthier, J.W.; Trautman, T.R.; Jacobson, D.B. Sustained Off-Resonance Irradiation for Collision-Activated Dissociation Involving FT-ICR-MS. CID Technique That Emulates Infrared Multiphoton Dissociation. Anal. Chim. Acta 1991, 246, 211-225.

    CAS  Google Scholar 

  130. Senko, M.W.; Speir, J.P.; McLafferty, F.W. Collisional Activation of Large Multiply Charged Ions Using Fourier Transform Mass Spectrometry. Anal. Chem. 1994, 66, 2801-2808.

    CAS  Google Scholar 

  131. Boering, K.A.; Rolfe, J.; Brauman, J.I. Control of Ion Kinetic Energy in ICRMS: Very-Low-Energy Collision-Induced Dissociation. Rapid Commun. Mass Spectrom. 1992, 6, 303-305.

    CAS  Google Scholar 

  132. Lee, S.A.; Jiao, C.Q.; Huang, Y.; Freiser, B.S. Multiple Excitation Collisional Activation in Fourier-Transform Mass Spectrometry. Rapid Commun. Mass Spectrom. 1993, 7, 819-821.

    CAS  Google Scholar 

  133. Mihalca, R.; van der Burgt, Y.E.M.; Heck, A.J.R.; Heeren, R.M.A. Disulfide Bond Cleavages Observed in SORI-CID of Three Nonapeptides Complexed With Divalent Transition-Metal Cations. J. Mass Spectrom. 2007, 42, 450-458.

    CAS  Google Scholar 

  134. Mirgorodskaya, E.; O'Connor, P.B.; Costello, C.E. A General Method for Precalculation of Parameters for Sustained Off Resonance Irradiation/ Collision-Induced Dissociation. J. Am. Soc. Mass Spectrom. 2002, 13, 318-324.

    CAS  Google Scholar 

  135. Woodin, R.L.; Bomse, D.S.; Beauchamp, J.L. Multiphoton Dissociation of Molecules With Low Power Continuous Wave Infrared Laser Radiation. J. Am. Chem. Soc. 1978, 100, 3248-3250.

    CAS  Google Scholar 

  136. Håkansson, K.; Cooper, H.J.; Emmet, M.R.; Costello, C.E.; Marshall, A.G.; Nilsson, C.L. Electron Capture Dissociation and Infrared Multiphoton Dissociation MS/MS of an N-Glycosylated Tryptic Peptic to Yield Complementary Sequence Information. Anal. Chem. 2001, 73, 4530-4536.

    Google Scholar 

  137. Little, D.P.; Senko, M.W.; O'Conner, P.B.; McLafferty, F.W. Infrared Multiphoton Dissociation of Large Multiply- Charged Ions for Biomolecule Sequencing. Anal. Chem. 1994, 66, 2809-2815.

    CAS  Google Scholar 

  138. Watson, C.H.; Baykut, G.; Eyler, J.R. Laser Photodissociation of Gaseous Ions Formed by Laser Desorption. Anal. Chem. 1987, 59, 1133-1138.

    CAS  Google Scholar 

  139. Eyler, J.R. Infrared Multiple Photon Dissociation Spectroscopy of Ions in Penning Traps. Mass Spectrom. Rev. 2009, 28, 448-467.

    CAS  Google Scholar 

  140. Brodbelt, J.S.; Wilson, J.J. Infrared Multiphoton Dissociation in Quadrupole Ion Traps. Mass Spectrom. Rev. 2009, 28, 390-424.

    CAS  Google Scholar 

  141. Hashimoto, Y.; Hasegawa, H.; Waki, I. High Sensitivity and Broad Dynamic Range Infrared Multiphoton Dissociation for a Quadrupole Ion Trap. Rapid Commun. Mass Spectrom. 2004, 18, 2255-2259.

    CAS  Google Scholar 

  142. Madsen, J.A.; Gardner, M.W.; Smith, S.I.; Ledvina, A.R.; Coon, J.J.; Schwartz, J.C.; Stafford, G.C.; Brodbelt, J.S. Top-Down Protein Fragmentation by Infrared Multiphoton Dissociation in a Dual Pressure Linear Ion Trap. Anal. Chem. 2009, 81, 8677-8686.

    CAS  Google Scholar 

  143. Gardner, M.W.; Smith, S.I.; Ledvina, A.R.; Madsen, J.A.; Coon, J.J.; Schwartz, J.C.; Stafford, G.C.; Brodbelt, J.S. Infrared Multiphoton Dissociation of Peptide Cations in a Dual Pressure Linear Ion Trap Mass Spectrometer. Anal. Chem. 2009, 81, 8109-8118.

    CAS  Google Scholar 

  144. Campbell, J.L.; Hager, J.W.; Le Blanc, J.C.Y. On Performing Simultaneous Electron Transfer Dissociation and Collision- Induced Dissociation on Multiply Protonated Peptides in a Linear Ion Trap. J. Am. Soc. Mass Spectrom. 2009, 20, 1672-1683.

    CAS  Google Scholar 

  145. Zubarev, R.A.; Kelleher, N.L.; McLafferty, F.W. Electron Capture Dissociation of Multiply Charged Protein Cations. A Nonergodic Process. J. Am. Chem. Soc. 1998, 120, 3265-3266.

    CAS  Google Scholar 

  146. Axelsson, J.; Palmblad, M.; Håkansson, K.; Håkansson, P. Electron Capture Dissociation of Substance P Using a Commercially Available Fourier Transform Ion Cyclotron Resonance Mass Spectrometer. Rapid Commun. Mass Spectrom. 1999, 13, 474-477.

    CAS  Google Scholar 

  147. Cerda, B.A.; Horn, D.M.; Breuker, K.; Carpenter, B.K.; McLafferty, F.W. Electron Capture Dissociation of Multiply- Charged Oxygenated Cations. A Nonergodic Process. Eur. Mass Spectrom. 1999, 5, 335-338.

    CAS  Google Scholar 

  148. Håkansson, K.; Emmet, M.R.; Hendrickson, C.L.; Marshall, A.G. High- Sensitivity Electron Capture Dissociation Tandem FTICR Mass Spectrometry of Microelectrosprayed Peptides. Anal. Chem. 2001, 73, 3605-3610.

    Google Scholar 

  149. Leymarie, N.; Berg, E.A.; McComb, M.E.; O'Conner, P.B.; Grogan, J.; Oppenheim, F.G.; Costello, C.E. Tandem Mass Spectrometry for Structural Characterization of Proline-Rich Proteins: Application to Salivary PRP-3. Anal. Chem. 2002, 74, 4124-4132.

    CAS  Google Scholar 

  150. Tsybin, Y.O.; Ramstroem, M.; Witt, M.; Baykut, G.; Hakansson, P. Peptide and Protein Characterization by High-Rate Electron Capture Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Mass Spectrom. 2004, 39, 719-729.

    CAS  Google Scholar 

  151. Zubarev, R.A.; Horn, D.M.; Fridriksson, E.K.; Kelleher, N.L.; Kruger, N.A.; Lewis, M.A.; Carpenter, B.K.; McLafferty, F.W. Electron Capture Dissociation for Structural Characterization of Multiply Charged Protein Cations. Anal. Chem. 2000, 72, 563-573.

    CAS  Google Scholar 

  152. Zubarev, R.A. Reactions of Polypeptide Ions with Electrons in the Gas Phase. Mass Spectrom. Rev. 2003, 22, 57-77.

    CAS  Google Scholar 

  153. Leymarie, N.; Costello, C.E.; O'Connor, P.B. Electron Capture Dissociation Initiates a Free Radical Reaction Cascade. J. Am. Chem. Soc. 2003, 125, 8949-8958.

    CAS  Google Scholar 

  154. Turecek, F. N-Cα Bond Dissociation Energies and Kinetics in Amide and Peptide Radicals. Is the Dissociation a Non- Ergodic Process? J. Am. Chem. Soc. 2003, 125, 5954-5963.

    CAS  Google Scholar 

  155. McFarland, M.A.; Marshall, A.G.; Hendrickson, C.L.; Nilsson, C.L.; Fredman, P.; Mansson, J.E. Structural Characterization of the GM1 Ganglioside by Infrared Multiphoton Dissociation, Electron Capture Dissociation, and Electron Detachment Dissociation Electrospray Ionization FT-ICR MS/MS. J. Am. Soc. Mass Spectrom. 2005, 16, 752-762.

    CAS  Google Scholar 

  156. Oh, H.B.; Lin, C.; Hwang, H.Y.; Zhai, H.; Breuker, K.; Zabrouskov, V.; Carpenter, B.K.; McLafferty, F.W. Infrared Photodissociation Spectroscopy of Electrosprayed Ions in a Fourier Transform Mass Spectrometer. J. Am. Chem. Soc. 2005, 127, 4076-4083.

    CAS  Google Scholar 

  157. Dunbar, R.C. BIRD (Blackbody Infrared Radiative Dissociation): Evolution, Principles, and Applications. Mass Spectrom. Rev. 2004, 23, 127-158.

    CAS  Google Scholar 

  158. Tsybin, Y.O.; Hakansson, P.; Budnik, B.A.; Haselmann, K.F.; Kjeldsen, F.; Gorshkov, M.; Zubarev, R.A. Improved Low-Energy Electron Injection Systems for High Rate Electron Capture Dissociation in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 2001, 15, 1849-1854.

    CAS  Google Scholar 

  159. Tsybin, Y.O.; Witt, M.; Baykut, G.; Kjeldsen, F.; Hakansson, P. Combined Infrared Multiphoton Dissociation and Electron Capture Dissociation With a Hollow Electron Beam in Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 1759-1768.

    CAS  Google Scholar 

  160. Syka, J.E.P.; Coon, J.J.; Schroeder, M.J.; Shabanowitz, J.; Hunt, D.F. Peptide and Protein Sequence Analysis by Electron Transfer Dissociation Mass Spectrometry. Proc. Natl. Acad. Sci. USA 2004, 101, 9528-9533.

    CAS  Google Scholar 

  161. Cooper, H.J.; Hakansson, K.; Marshall, A.G. The Role of Electron Capture Dissociation in Biomolecular Analysis. Mass Spectrom. Rev. 2005, 24, 201-222.

    CAS  Google Scholar 

  162. Swaney, D.L.; McAlister, G.C.; Wirtala, M.; Schwartz, J.C.; Syka, J.E.P.; Coon, J.J. Supplemental Activation Method for High-Efficiency Electron-Transfer Dissociation of Doubly Protonated Peptide Precursors. Anal. Chem. 2007, 79, 477-485.

    CAS  Google Scholar 

  163. Coon, J.J.; Syka, J.E.P.; Schwartz, J.C.; Shabanowitz, J.; Hunt, D.F. Anion Dependence in the Partitioning Between Proton and Electron Transfer in Ion/Ion Reactions. Int. J. Mass Spectrom. 2004, 236, 33-42.

    CAS  Google Scholar 

  164. Good, D.M.; Wirtala, M.; McAlister, G.C.; Coon, J.J. Performance Characteristics of Electron Transfer Dissociation Mass Spectrometry. Mol. Cell. Proteomics 2007, 6, 1942-1951.

    CAS  Google Scholar 

  165. Chi, A.; Huttenhower, C.; Geer, L.Y.; Coon, J.J.; Syka, J.E.P.; Bai, D.L.; Shabanowitz, J.; Burke, D.J.; Troyanskaya, O.G.; Hunt, D.F. Analysis of Phosphorylation Sites on Proteins From Saccharomyces Cerevisiae by Electron Transfer Dissociation (ETD) Mass Spectrometry. Proc. Natl. Acad. Sci. USA 2007, 104, 2193-2198.

    CAS  Google Scholar 

  166. Liang, X.; Hager, J.W.; McLuckey, S.A. Transmission Mode Ion/Ion Electron- Transfer Dissociation in a Linear Ion Trap. Anal. Chem. 2007, 79, 3363-3370.

    CAS  Google Scholar 

  167. McAlister, G.C.; Berggren, W.T.; Griep- Raming, J.; Horning, S.; Makarov, A.; Phanstiel, D.; Stafford, G.; Swaney, D.L.; Syka, J.E.P.; Zabrouskov, V.; Coon, J.J. A Proteomics Grade Electron Transfer Dissociation-Enabled Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer. J. Prot. Res. 2008, 7, 3127-3136.

    CAS  Google Scholar 

  168. Williams, D.K., Jr.; McAlister, G.C.; Good, D.M.; Coon, J.J.; Muddiman, D.C. Dual Electrospray Ion Source for Electron-Transfer Dissociation on a Hybrid Linear Ion Trap-Orbitrap Mass Spectrometer. Anal. Chem. 2007, 79, 7916-7919.

    CAS  Google Scholar 

  169. McAlister, G.C.; Phanstiel, D.; Good, D.M.; Berggren, W.T.; Coon, J.J. Implementation of Electron-Transfer Dissociation on a Hybrid Linear Ion Trap- Orbitrap Mass Spectrometer. Anal. Chem. 2007, 79, 3525-3534.

    CAS  Google Scholar 

  170. Haselmann, K.F.; Budnik, B.A.; Kjeldsen, F.; Nielsen, M.L.; Olsen, J.V.; Zubarev, R.A. Electronic Excitation Gives Informative Fragmentation of Polypeptide Cations and Anions. Eur. J. Mass Spectrom. 2002, 8, 117-121.

    CAS  Google Scholar 

  171. Budnik, B.A.; Haselmann, K.F.; Zubarev, R.A. Electron Detachment Dissociation of Peptide Di-Anions: an Electron- Hole Recombination Phenomenon. Chem. Phys. Lett. 2001, 342, 299-302.

    CAS  Google Scholar 

  172. Kjeldsen, F.; Silivra, O.A.; Ivonin, I.A.; Haselmann, K.F.; Gorshkov, M.; Zubarev, R.A. Cα-C Backbone Fragmentation Dominates in Electron Detachment Dissociation of Gas-Phase Polypeptide Polyanions. Chem.- Eur. J. 2005, 11, 1803-1812.

    CAS  Google Scholar 

  173. Anusiewicz, I.; Jasionowski, M.; Skurski, P.; Simons, J. Backbone and Side- Chain Cleavages in Electron Detachment Dissociation (EDD). J. Phys. Chem. A 2005, 109, 11332-11337.

    CAS  Google Scholar 

  174. Yang, J.; Mo, J.; Adamson, J.T.; Haakansson, K. Characterization of Oligodeoxynucleotides by Electron Detachment Dissociation Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2005, 77, 1876-1882.

    CAS  Google Scholar 

  175. Huzarska, M.; Ugalde, I.; Kaplan, D.A.; Hartmer, R.; Easterling, M.L.; Polfer, N.C. Negative Electron Transfer Dissociation of Deprotonated Phosphopeptide Anions: Choice of Radical Cation Reagent and Competition Between Electron and Proton Transfer. Anal. Chem. 2010, 82, 2873-2878.

    CAS  Google Scholar 

  176. Sleno, L.; Volmer, D.A. Ion Activation Methods for Tandem Mass Spectrometry. J. Mass Spectrom. 2004, 39, 1091-1112.

    CAS  Google Scholar 

  177. Adlhart, C.; Hinderling, C.; Baumann, H.; Chen, P. Mechanistic Studies of Olefin Metathesis by Ruthenium Carbene Complexes Using Electrospray Ionization Tandem Mass Spectrometry. J. Am. Chem. Soc. 2000, 122, 8204-8214.

    CAS  Google Scholar 

  178. Hinderling, C.; Adlhart, C.; Chen, P. Mechanism-Based High-Throughput Screening of Catalysts. Chimia 2000, 54, 232-235.

    CAS  Google Scholar 

  179. Volland, M.A.O.; Adlhart, C.; Kiener, C.A.; Chen, P.; Hofmann, P. Catalyst Screening by Electrospray Ionization Tandem Mass Spectrometry: Hofmann Carbenes for Olefin Metathesis. Chem. - Eur. J. 2001, 7, 4621-4632.

    CAS  Google Scholar 

  180. Schwarz, H. Relativistic Effects in Gas- Phase Ion Chemistry: An Experimentalist's View. Angew. Chem., Int. Ed. 2003, 42, 4442-4454.

    CAS  Google Scholar 

  181. Schwarz, H. On the Spin-Forbiddeness of Gas-Phase Ion-Molecule Reactions: a Fruitful Intersection of Experimental and Computational Studies. Int. J. Mass Spectrom. 2004, 237, 75-105.

    CAS  Google Scholar 

  182. Boehme, D.K.; Schwarz, H. Gas-Phase Catalysis by Atomic and Cluster Metal Ions: The Ultimate Single-Site Catalysts. Angew. Chem., Int. Ed. 2005, 44, 2336-2354.

    CAS  Google Scholar 

  183. Schlangen, M.; Schroeder, D.; Schwarz, H. Pronounced Ligand Effects and the Role of Formal Oxidation States in the Nickel-Mediated Thermal Activation of Methane. Angew. Chem., Int. Ed. 2007, 46, 1641-1644.

    CAS  Google Scholar 

  184. Kaltashov, I.A.; Eyles, S.J. Mass Spectrometry in Biophysics: Conformation and Dynamics of Biomolecules; Wiley: Hoboken, 2005.

    Google Scholar 

  185. Somogyi, A. Probing Peptide Fragment Ion Structures by Combining Sustained Off-Resonance Collision-Induced Dissociation and Gas-Phase H/D Exchange (SORI-HDX) in Fourier Transform Ion- Cyclotron Resonance (FT-ICR) Instruments. J. Am. Soc. Mass Spectrom. 2008, 19, 1771-1775.

    CAS  Google Scholar 

  186. Bythell, B.J.; Somogyi, Á.; Paizs, B. What Is the Structure of B2 Ions Generated From Doubly Protonated Tryptic Peptides? J. Am. Soc. Mass Spectrom. 2009, 20, 618-624.

    CAS  Google Scholar 

  187. Harrison, A.G. The Gas-Phase Basicities and Proton Affinities of Amino Acids and Peptides. Mass Spectrom. Rev. 1997, 16, 201-217.

    CAS  Google Scholar 

  188. McMahon, T.B. Thermochemical Ladders: Scaling the Ramparts of Gaseous Ion Energetics. Int. J. Mass Spectrom. 2000, 200, 187-199.

    CAS  Google Scholar 

  189. Cooks, R.G.; Kruger, T.L. Intrinsic Basicity Determination Using Metastable Ions. J. Am. Chem. Soc. 1977, 99, 1279-1281.

    CAS  Google Scholar 

  190. Cooks, R.G.; Wong, P.S.H. Kinetic Method of Making Thermochemical Determinations: Advances and Applications. Acc. Chem. Res. 1998, 31, 379-386.

    CAS  Google Scholar 

  191. Cooks, R.G.; Patrick, J.S.; Kotiaho, T.; McLuckey, S.A. Thermochemical Determinations by the Kinetic Method. Mass Spectrom. Rev. 1994, 13, 287-339.

    CAS  Google Scholar 

  192. Kukol, A.; Strehle, F.; Thielking, G.; Grützmacher, H.-F. Methyl Group Effect on the Proton Affinity of Methylated Acetophenones Studied by Two Mass Spectrometric Techniques. Org. Mass Spectrom. 1993, 28, 1107-1110.

    CAS  Google Scholar 

  193. Bouchoux, G.; Salpin, J.Y. Gas-Phase Basicity and Heat of Formation of Sul- Sulfine CH2=S=O. J. Am. Chem. Soc. 1996, 118, 6516-6517.

    CAS  Google Scholar 

  194. Bouchoux, G.; Salpin, J.Y.; Leblanc, D. A Relationship Between the Kinetics and Thermochemistry of Proton Transfer Reactions in the Gas Phase. Int. J. Mass Spectrom. Ion Proc. 1996, 153, 37-48.

    CAS  Google Scholar 

  195. Witt, M.; Kreft, D.; Grützmacher, H.-F. Effects of Internal Hydrogen Bonds Between Amide Groups: Protonation of Alicyclic Diamides. Eur. J. Mass Spectrom. 2003, 9, 81-95.

    CAS  Google Scholar 

  196. Danis, P.O.; Wesdemiotis, C.; McLafferty, F.W. Neutralization-Reionization Mass Spectrometry (NRMS). J. Am. Chem. Soc. 1983, 105, 7454-7456.

    CAS  Google Scholar 

  197. Gellene, G.I.; Porter, R.F. Neutralized Ion-Beam Spectroscopy. Acc. Chem. Res. 1983, 16, 200-207.

    CAS  Google Scholar 

  198. Terlouw, J.K.; Kieskamp, W.M.; Holmes, J.L.; Mommers, A.A.; Burgers, P.C. The Neutralization and Reionization of Mass-Selected Positive Ions by Inert Gas Atoms. Int. J. Mass Spectrom. Ion Proc. 1985, 64, 245-250.

    CAS  Google Scholar 

  199. Holmes, J.L.; Mommers, A.A.; Terlouw, J.K.; Hop, C.E.C.A. The Mass Spectrometry of Neutral Species Produced From Mass-Selected Ions by Collision and by Charge Exchange. Experiments With Tandem Collision Gas Cells. Int. J. Mass Spectrom. Ion Proc. 1986, 68, 249-264.

    CAS  Google Scholar 

  200. Blanchette, M.C.; Holmes, J.L.; Hop, C.E.C.A.; Mommers, A.A. The Ionization of Fast Neutrals by Electron Impact in the Second Field-Free Region of a Mass Spectrometer of Reversed Geometry. Org. Mass Spectrom. 1988, 23, 495-498.

    CAS  Google Scholar 

  201. McLafferty, F.W. Neutralization-Reionization Mass Spectrometry. Int. J. Mass Spectrom. Ion Proc. 1992, 118/119, 221-235.

    Google Scholar 

  202. Goldberg, N.; Schwarz, H. Neutralization- Reionization Mass Spectrometry: a Powerful "Laboratory" to Generate and Probe Elusive Neutral Molecules. Acc. Chem. Res. 1994, 27, 347-352.

    CAS  Google Scholar 

  203. Schalley, C.A.; Hornung, G.; Schroder, D.; Schwarz, H. Mass Spectrometry As a Tool to Probe the Gas-Phase Reactivity of Neutral Molecules. Int. J. Mass Spectrom. Ion Proc. 1998, 172, 181-208.

    CAS  Google Scholar 

  204. Schalley, C.A.; Hornung, G.; Schroder, D.; Schwarz, H. Mass Spectrometric Approaches to the Reactivity of Transient Neutrals. Chem. Soc. Rev. 1998, 27, 91-104.

    CAS  Google Scholar 

  205. Blanchette, M.C.; Bordas-Nagy, J.; Holmes, J.L.; Hop, C.E.C.A.; Mommers, A.A.; Terlouw, J.K. Neutralization-Reionization Experiments; A Simple Metal Vapor Cell for VG Analytical ZAB-2F Mass Spectrometers. Org. Mass Spectrom. 1988, 23, 804-807.

    CAS  Google Scholar 

  206. Zang, M.Y.; McLafferty, F.W. Organic Neutralization Agents for Neutralization- Reionization Mass Spectrometry. J. Am. Chem. Soc. Mass Spectrom. 1992, 3, 108-112.

    Google Scholar 

  207. Zhang, M.-Y.; McLafferty, F.W. Quantitative Analysis of Isomeric Ion Mixtures. Org. Mass Spectrom. 1992, 27, 991-994.

    CAS  Google Scholar 

  208. Zagorevskii, D.V.; Holmes, J.L. Neutralization- Reionization Mass Spectrometry Applied to Organometallic and Coordination Chemistry. Mass Spectrom. Rev. 1994, 13, 133-154.

    CAS  Google Scholar 

  209. Zagorevskii, D.V.; Holmes, J.L. Neutralization- Reionization Mass Spectrometry Applied to Organometallic and Coordination Chemistry (Update: 1994- 1998). Mass Spectrom. Rev. 1999, 18, 87-118.

    CAS  Google Scholar 

  210. Weiske, T.; Wong, T.; Krätschmer, W.; Terlouw, J.K.; Schwarz, H. Proof of the Existence of an Endohedral Helium- Fullerene (He@C60) Structure Via Gas- Phase Neutralization of [HeC60]+. Angew. Chem., Int. Ed. 1992, 31, 183-185.

    Google Scholar 

  211. Keck, H.; Kuchen, W.; Tommes, P.; Terlouw, J.K.; Wong, T. The Phosphonium Ylide CH2PH3 Is Stable in Gas Phase. Angew. Chem., Int. Ed. 1992, 31, 86-87.

    Google Scholar 

  212. Schröder, D.; Schwarz, H.; Wulf, M.; Sievers, H.; Jutzi, P.; Reiher, M. Experimental Evidence for the Existence of Neutral P6: A New Allotrope of Phosphorus. Angew. Chem., Int. Ed. 1999, 38, 313-315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen H. Gross .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gross, J.H. (2011). Tandem Mass Spectrometry. In: Mass Spectrometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10711-5_9

Download citation

Publish with us

Policies and ethics