Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 267))

Abstract

This chapter is a continuation of an investigation on deterministic spatiotemporal chaos real-time control by means of selected evolutionary techniques. Real-time like behavior is specially defined and simulated with spatiotemporal chaos model based on mutually nonlineary joined n equations, so called Coupled Map Lattices. In total five evolutionary algorithms has been used for chaos control: differential evolution, self-organizingmigrating algorithm, genetic algorithm, simulated annealing and evolutionary strategies in a total of 15 versions. For modeling of spatiotemporal chaos behavior, the so called coupled map lattices were used based on logistic equation to generate chaos. The main aim of this investigation was to show that evolutionary algorithms, under certain conditions, are capable of controlling of CML deterministic chaos, when the cost function is properly defined alongside the parameters of selected evolutionary algorithms. Investigation consists of four different case studies with increasing simulation complexity. For all algorithms each simulation was evaluated 100 times in order to show and check robustness of used methods. All data were processed and used in order to get summarized results and graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer, H.: Theory of Evolution Strategies. Springer, New York (2001)

    Google Scholar 

  2. Cerny, V.: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. J. Opt. Theory Appl. 45(1), 41–51 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, G.: Controlling Chaos and Bifurcations in Engineering Systems. CRC Press, Boca Raton (2000)

    MATH  Google Scholar 

  4. Chen, G., Dong, X.: From Chaos to Order: Methodologies, Perspectives and Applications. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  5. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2006)

    Google Scholar 

  6. Das, S., Konar, A.: A swarm intelligence approach to the synthesis of two-dimensional IIR filters. Eng. Appl. Artif. Intell. 20(8), 1086–1096 (2007)

    Article  Google Scholar 

  7. Dashora, Y.: Improved and generalized learning strategies for dynamically fast and statistically robust evolutionary algorithms. Eng. Appl. Artif. Intel. (2007), doi:10.1016/j.engappai.2007.06.005

    Google Scholar 

  8. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, Berlin (1996)

    Google Scholar 

  9. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  10. Deilami, M., Rahmani, C., Motlagh, M.: Control of spatio-temporal on-off intermittency in random driving diffusively coupled map lattices, Chaos, Solitons & Fractals, December 21 (2007)

    Google Scholar 

  11. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  12. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeezeland. Wiley-Interscience, New York (2002)

    MATH  Google Scholar 

  13. Grebogi, C., Lai, Y.C.: Controlling chaos. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New York (1999)

    Google Scholar 

  14. He, Q., Wang, L.: An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng. Appl. Artif. Intell. 20(1), 89–99 (2007)

    Article  Google Scholar 

  15. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  16. Holland, J.: Adaptation in Natural and Artificial Systems. Univ. Michigan Press, Ann Arbor (1975)

    Google Scholar 

  17. Hu, G., Xie, F., Xiao, J., Yang, J., Qu, Z.: Control of patterns and spatiotemporal chaos and its application. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New York (1999)

    Google Scholar 

  18. Hwang, G.-H.-H., Dong-Wan, K., Jae-Hyun, L., Young-Joo, A.: Design of fuzzy power system stabilizer using adaptive evolutionary algorithm. Eng. Appl. Artif. Intell. 21(1), 86–96 (2007)

    Article  Google Scholar 

  19. Just, W.: Principles of time delayed feedback control. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, New York (1999)

    Google Scholar 

  20. Just, W., Benner, H., Reibold, E.: Theoretical and experimental aspects of chaos control by time-delayed feedback. Chaos 13, 259–266 (2003)

    Article  Google Scholar 

  21. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  22. Liu, L., Liu, W., Cartes, D.: Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng. Appl. Artif. Intell. (2007), doi:10.1016/j.engappai.2007.10.002

    Google Scholar 

  23. Lorenz, E.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  Google Scholar 

  24. May, R.: Simple mathematical model with very complicated dynamics. Nature 261, 45–67 (1976)

    Article  Google Scholar 

  25. Nolle, L., Goodyear, A., Hopgood, A.A., Picton, P.D., Braithwaite, N.StJ.: On Step Width Adaptation in Simulated Annealing for Continuous Parameter Optimisation. In: Reusch, B. (ed.) Fuzzy Days 2001. LNCS, vol. 2206, pp. 589–598. Springer, Heidelberg (2001)

    Google Scholar 

  26. Nolle, L., Zelinka, I., Hopgood, A., Goodyear, A.: Comparison of an self organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Adv. Eng. Software 36(10), 645–653 (2005)

    Article  Google Scholar 

  27. Ott, E., Grebogi, C., Yorke, J.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)

    Google Scholar 

  29. Richter, H.: An evolutionary algorithm for controlling chaos: The use of multiobjective fitness functions. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–317. Springer, Heidelberg (2002)

    Google Scholar 

  30. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary algorithm. Physica D 144, 309–334 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999)

    Book  MATH  Google Scholar 

  32. Stewart, I.: The Lorenz attractor exists. Nature 406, 948–949 (2000)

    Article  Google Scholar 

  33. Wang, X., Chen, G.: Chaotification via arbitrarily small feedback controls: Theory, method, and applications. Int. J. of Bifur. Chaos 10, 549–570 (2000)

    MATH  Google Scholar 

  34. Zahra, R., Motlagh, M.: Control of spatiotemporal chaos in coupled map lattice by discrete-time variable structure control. Phys. Lett. A 370(3–4), 302–305 (2007)

    Google Scholar 

  35. Zelinka, I.: SOMA — Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York (2004)

    Google Scholar 

  36. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control. In: IFAC, Prague 2005 (2005a)

    Google Scholar 

  37. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control — Extended Study. In: 19th International Conference on Simulation and Modeling, ECMS 2005, Riga, Latvia, June 1–4 (2005b)

    Google Scholar 

  38. Zelinka, I.: Investigation on realtime deterministic chaos control by means of evolutionary algorithms. In: Proc. First IFAC Conference on Analysis and Control of Chaotic Systems, Reims, France, pp. 211–217 (2006)

    Google Scholar 

  39. Zelinka, I.: Real-time deterministic chaos control by means of selected evolutionary algorithms. Eng. Appl. Artif. Intell (2008), doi:10.1016/j.engappai.2008.07.008

    Google Scholar 

  40. Zelinka, I., Nolle, L.: Plasma reactor optimizing using differential evolution. In: Price, K., Lampinen, J., Storn, R. (eds.) Differential Evolution: A Practical Approach to Global Optimization, pp. 499–512. Springer, New York (2006)

    Google Scholar 

  41. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of Chaos Control, Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045

    Google Scholar 

  42. Zou, Y., Luo, X., Chen, G.: Pole placement method of controlling chaos in DC-DC buck converters. Chinese Phys. 15, 1719–1724 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zelinka, I. (2010). Evolutionary Control of CML Systems. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds) Evolutionary Algorithms and Chaotic Systems. Studies in Computational Intelligence, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10707-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10707-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10706-1

  • Online ISBN: 978-3-642-10707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics