Skip to main content

Evolutionary Design of Chaos Control in 1D

  • Chapter
Evolutionary Algorithms and Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 267))

Abstract

The main aim of this work is to show that powerful optimizing tools like evolutionary algorithms can be in reality used for the optimization of deterministic chaos control. This work is aimed on explanation of how to use evolutionary algorithms (EAs) and how to properly define the cost function (CF). It is also focused on selection of control method and, the explanation of all possible problems with optimization which comes together in such a difficult task, which is chaos control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrievski, B., Fradkov, A.: Control of Chaos: Methods and Applications. Autom. Rem. Contr. 64(5), 679–719 (2003)

    Google Scholar 

  2. Awad, E., Ammar, S.: Optimal control and synchronization of Lorenz system with complete unknown parameters. Chaos, Solitons & Fractals 30(5), 1122–1132 (2006)

    Article  MathSciNet  Google Scholar 

  3. Bing, C., Xiaoping, L., Shaocheng, T.: Adaptive fuzzy approach to control unified chaotic systems. Chaos, Solitons & Fractals 34(4), 1180–1187 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bird, C., Aston, P.: Targeting in the Presence of Noise. Chaos, Solitons, & Fractals 9(1), 251–259 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bollt, E., Kostelich, E.: Optimal Targeting of Chaos. Phys. Lett. 245, 399–406 (1998)

    Article  Google Scholar 

  6. Cannas, B., Cincotti, S., Pisano, A., Usai, E.: Controlling Chaos via Second-Order Sliding Modes. In: Proc. International Symposium on Circuits and Systems, ISCAS 2003, pp. 156–159 (2003)

    Google Scholar 

  7. Chen, L.: The Open-plus-closed-loop Control of Chaotic Maps and its Robustness. Chaos, Solitons & Fractals 21, 113–118 (2004)

    Article  MathSciNet  Google Scholar 

  8. Fradkov, A., Evans, R.: Control of Chaos:Survey 1997–2000. In: Preprints of 15th Triennial World Congress IFAC, Plenary Papers, Survey Papers, Milestones, Barcelona, pp. 143–154 (2002)

    Google Scholar 

  9. Fradkov, A., Evans, R.: Control of Chaos: Methods and Applications in Engineering. Annu. Rev. Contr. 29(1), 33–56 (2005)

    Article  Google Scholar 

  10. Gonzales-Miranda, J.: Perturbing Chaotic Systems to Control Chaos. In: Synchronization and Control of Chaos — An Introduction for Scientists and Engineers. Imperial College Press, London (2004)

    Chapter  Google Scholar 

  11. Grebogi, C., Lai, Y.: Controlling Chaotic Dynamical System. Phys. Rep. 31, 307–312 (1997)

    MathSciNet  Google Scholar 

  12. Grebogi, C., Lai, Y.: Controling Chaos. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, Weinheim (1999)

    Google Scholar 

  13. Grebogi, C., Lai, Y.: Pole placement Method of Controling Chaos in high dimensions. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, Weinheim (1999b)

    Google Scholar 

  14. Hassan, S., Mohammad, S.: Indirect adaptive control of discrete chaotic systems. Chaos, Solitons & Fractals 34(4), 1188–1201 (2007)

    Article  MathSciNet  Google Scholar 

  15. Hilborn, R.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, Oxford (2000)

    Google Scholar 

  16. Hua, Ch., Guan, X.: Adaptive Control for Chaotic systems. Chaos, Solitons & Fractals 22, 55–60 (2004)

    Article  MathSciNet  Google Scholar 

  17. Huang, W.: Stabilizing nonlinear dynamical systems by an adaptive adjustment mechanism. Phys. Rev. E 61, R1012–1015 (2000)

    Article  Google Scholar 

  18. Iplikci, S., Denizhan, Y.: Control of chaotic systems using targeting by extended control regions method. Phys. Nonlinear Phenom. 150(3–4), 163–176 (2001)

    Article  Google Scholar 

  19. Iplikci, S., Denizhan, Y.: An improved neural network based targeting method for chaotic dynamics. Chaos, Solitons & Fractals 17(2), 523–529 (2003)

    Article  Google Scholar 

  20. Just, W.: Principles of Time Delayed Feedback Control. In: Schuster, H. (ed.) Handbook of Chaos Control. Wiley-VCH, Weinheim (1999)

    Google Scholar 

  21. Kostelich, E., Ott, E., Grebogi, C., Yorke, J.: Higher-dimensional Targeting. Phys. Rev. E 47(1), 305–310 (1993)

    Article  MathSciNet  Google Scholar 

  22. Kwon, J.: Targeting and Stabilizing Chaotic Trajectories in the Standard Map. Phys. Lett. 258, 229–236 (1999)

    Article  MathSciNet  Google Scholar 

  23. Mascolo, S.: Backstepping Design for Controlling Lorenz Chaos. In: Proc. 36th IEEE Conference on Decision and Control, San Diego, pp. 1500–15001 (1997)

    Google Scholar 

  24. Mascolo, S., Grassi, G.: Controlling Chaos via Backstepping Design. Phys. Rev. E 56(5), 6166–6169 (1997)

    Article  Google Scholar 

  25. May, R.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (2001)

    Google Scholar 

  26. Ott, E., Grebogi, C., Yorke, A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  Google Scholar 

  27. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. 170, 421–428 (1992)

    Article  Google Scholar 

  28. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)

    Google Scholar 

  29. Pyragas, K.: Control of chaos via extended delay feedback. Phys. Lett. 206, 323–330 (1995)

    Article  MathSciNet  Google Scholar 

  30. Ramaswamy, R., Sinha, S., Gupte, N.: Targeting Chaos Through Adaptive Control. Phys. Rev. E 57(3), 2507–2510 (1998)

    Article  Google Scholar 

  31. Paskota, M., Lee, J.: Targeting moving targets in chaotic dynamical systems. Chaos, Solitons & Fractals 8(9), 1533–1544 (1997)

    Article  MathSciNet  Google Scholar 

  32. Richter, H.: An Evolutionary Algorithm for Controlling Chaos: The Use of Multi — Objective Fitness Function. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 308–320. Springer, Heidelberg (2002)

    Google Scholar 

  33. Richter, H., Reinschke, K.: Optimization of local control of chaos by an evolutionary algorithm. Physica D 144, 309–334 (2000)

    Article  MathSciNet  Google Scholar 

  34. Senkerik, R., Zelinka, I., Davendra, D.: Comparison of Evolutionary Algorithms in the Task of Chaos Control Optimization. In: Proc. IEEE Congres on Evolutionary Computation 2007, CEC 2007, Singapore, September 25–28, pp. 3952–3958 (2007)

    Google Scholar 

  35. Senkerik, R., Zelinka, I., Navratil, E.: Optimitazion of Feedback Control of Chaos by Evolutionary Algorithms. In: Proc. 1st IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS 2006, Reims, France, pp. 97–102 (2006)

    Google Scholar 

  36. Senkerik, R., Zelinka, I., Navratil, E.: Design of Targeting Cost function for Evolutionary Optimization of Chaos Control. In: Proc. 21st European Conference on Modelling and Simulation 2007, ECMS 2007, Prague, Czech Republic, June 4–6, pp. 345–350 (2007)

    Google Scholar 

  37. Senkerik, R., Zelinka, I., Navratil, E.: Cost function Design for Evolutionary Optimization of Chaos Control. In: Proc. 9th European Control Conference 2007, ECC 2007, Kos, Greece, July 2–5, pp. 1682–1687 (2007)

    Google Scholar 

  38. Starrett, J.: Time-optimal Chaos Control by Center Manifold Targeting. Phys. Rev. E 66(4), 6206–6211 (2002)

    Article  Google Scholar 

  39. Sun, J.: Impulsive Control of a New Chaotic System. Math. Comput. Simulat. 64, 669–677 (2004)

    Article  Google Scholar 

  40. Sun, J., Zhang, Y.: Control of Chaotic Systems Using an on-line Trained Linear Neural Controller. Physica D 100, 423–438 (1997)

    Article  Google Scholar 

  41. Sun, J., Zhang, Y.: Impulsive Control of Rossler System. Phys. Lett. 306, 306–312 (2003)

    Article  MathSciNet  Google Scholar 

  42. Tian, Y., Gao, F.: Adaptive Control of Chaotic Continuous-time systems with delay. Phys. Nonlinear Phenom. 117, 1–12 (1998)

    Article  MathSciNet  Google Scholar 

  43. Yang, T., Yang, L., Yang, C.: Impulsive Control of Lorenz System. Physica D 110, 18–24 (1997)

    Article  MathSciNet  Google Scholar 

  44. Yongai, Z.: Controlling chaos based on an adaptive adjustment mechanism. Chaos, Solitons & Fractals 30(5), 1069–1073 (2006)

    Article  MathSciNet  Google Scholar 

  45. Zelinka, I.: SOMA — Self Organizing Migrating Algorithm. In: Babu, B., Onwubolu, G. (eds.) New Optimization Techniques in Engineering. Springer, Heidelberg (2004)

    Google Scholar 

  46. Zelinka, I.: Investigation on Evolutionary Deterministic Chaos Control — Extended Study. In: ECMS 2005, Riga, Latvia (2005)

    Google Scholar 

  47. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Real Time Deterministic Chaos Control by Means of Evolutionary Algorithms. In: Proc. 1st IFAC Conference on Analysis and Control of Chaotic Systems, CHAOS 2006, Reims, France, June 28–30, pp. 211–217 (2006)

    Google Scholar 

  48. Zelinka, I., Senkerik, R., Navratil, E.: Investigation on Evolutionary Optimitazion of Chaos Control. Chaos, Solitons & Fractals (2007), doi:10.1016/j.chaos.2007.07.045

    Google Scholar 

  49. Zeng, Y., Singh, S.: Adaptive Control of Chaos in Lorenz System. Dynam. Contr. 7, 143–154 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Senkerik, R., Zelinka, I., Davendra, D., Oplatkova, Z. (2010). Evolutionary Design of Chaos Control in 1D. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds) Evolutionary Algorithms and Chaotic Systems. Studies in Computational Intelligence, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10707-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10707-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10706-1

  • Online ISBN: 978-3-642-10707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics