Skip to main content

Chaos Theory for Evolutionary Algorithms Researchers

  • Chapter
Evolutionary Algorithms and Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 267))

Abstract

This chapter deals with chaotic systems. Based on the characterization of deterministic chaos, universal features of that kind of behavior are explained. It is shown that despite the deterministic nature of chaos, long term behavior is unpredictable. This is called sensitivity to initial conditions. We further give a concept of quantifying chaotic dynamics: the Lyapunov exponent. Moreover, we explain how chaos can originate from order by period doubling, intermittence, chaotic transients and crises. In the second part of the chapter we discuss different examples of systems showing chaos, for instance mechanical, electronic, biological, meteorological, algorithmical and astronomical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abarbanel, H.: Analysis of observed chaotic data. Springer, New York (1996)

    MATH  Google Scholar 

  2. Abarbanel, H., Brown, R., Kennel, M.: Variation of Lyapunov exponents on a strange attractor. J. Nonlinear Sci. 1, 175 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alligood, K., Sauer, T., Yorke, J.: Chaos — an introduction to dynamical systems. Springer, New York (1997)

    Google Scholar 

  4. Arnold, V.: The Theory of Singularities and Its Applications, Accademia Nazionale Dei Lincei, Pisa, Italy (1991)

    MATH  Google Scholar 

  5. Baker, G., Gollub, J.: Chaotic dynamics: an introduction. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  6. Barnsley, M.: Fractals Everywhere. Academic Press Professional, London (1993)

    MATH  Google Scholar 

  7. Bose, N., Liang, P.: Neural Network Fundamentals with Graphs, Algorithms, and Applications. McGraw-Hill Series in Electrical and Computer Engineering (1996)

    Google Scholar 

  8. Constantin, P., Foias, C.: Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of attractors for 2D Navier-Stokes equations. Commun. Pure Appl. Math. 38, 1 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cvitanovic, P.: Universality in Chaos. Taylor and Francis, Abington (1989)

    Google Scholar 

  10. Diks, C.: Nonlinear time series analysis, Methods and applications. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  11. Drazin, P., Kind, G.(eds.): Interpretation of time series from nonlinear Systems. Special issue of Physica D, 58 (1992)

    Google Scholar 

  12. Galka, A.: Topics in nonlinear time series analysis with implications for EEG analysis. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  13. Gilmore, R.: Catastrophe Theory for Scientists and Engineers. John Wiley and Sons, Chichester (1993)

    Google Scholar 

  14. Haken, H.: Synergetics: Introduction and Advanced Topics. Springer, Heidelberg (2004)

    Google Scholar 

  15. Kaplan, J., Yorke, J.: Chaotic behavior of multidimensional difference equations. In: Walter, H., Peitgen, H. (eds.) Functional differential equations and approximation of fixed points. Lect. Notes Math., vol. 730, p. 204. Springer, Berlin (1979)

    Chapter  Google Scholar 

  16. Hilborn, R.: Chaos and Nonlinear Dynamics. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  17. Kantz, H., Schreiber, T.: Nonlinear time series analysis. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  18. Ledrappier, F., Young, L.: The metric entropy of diffeomorphisms, Parts I and II. Ann. Math. 122, 509 (1985)

    Article  MathSciNet  Google Scholar 

  19. Packard, N., Crutchfield, J., Farmer, D., Shaw, R.: Geometry from a time series. Phys. Rev. Lett. 45, 712 (1980)

    Article  Google Scholar 

  20. Pesin, Y.: Characteristic Lyapunov exponents and smooth ergodic theory. Russ. Math. Surv. 32, 55 (1977)

    Article  MathSciNet  Google Scholar 

  21. Poston, T., Stewart, I.: Catastrophe Theory and its Applications, Pitman, pp. 842–844. IEEE Press, New York (1977)

    Google Scholar 

  22. Rössler, O.: An equation for hyperchaos. Phys. Lett. A 71, 155 (1979)

    Article  MathSciNet  Google Scholar 

  23. Ruelle, D.: Thermodynamics Formalism. Addison-Wesley, Reading (1978)

    Google Scholar 

  24. Schuster, H.: Handbook of Chaos Control. Wiley-VCH, New York (1999)

    Book  MATH  Google Scholar 

  25. Sprott, J.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  26. Takens, F.: Detecting strange attractors in turbulence. Lecture Notes in Math., vol. 898 (1981)

    Google Scholar 

  27. Vose, M.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  28. Vose, M., Liepins, G.: Punctuated equilibria in genetic search. Complex Systems 5, 31–44 (1991)

    MATH  MathSciNet  Google Scholar 

  29. Vose, M., Wright, A.: Simple genetic algorithms with linear fitness. Evol. Comput. 4(2), 347–368 (1994)

    Article  Google Scholar 

  30. Wolff, R.: Local Lyapunov exponents: Looking closely at chaos. J. R. Statist. Soc. B 54, 301 (1992)

    MathSciNet  Google Scholar 

  31. Wolfram, S.: A New Kind of Science, Wolfram Media (2002)

    Google Scholar 

  32. Wright, A., Agapie, A.: Cyclic and Chaotic Behavior in Genetic Algorithms. In: Proc. of Genetic and Evolutionary Computation Conference (GECCO), San Francisco, July 7–11 (2001)

    Google Scholar 

  33. Wyk, M.: Chaos in Electronics. Springer, Heidelberg (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Celikovsky, S., Zelinka, I. (2010). Chaos Theory for Evolutionary Algorithms Researchers. In: Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds) Evolutionary Algorithms and Chaotic Systems. Studies in Computational Intelligence, vol 267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10707-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10707-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10706-1

  • Online ISBN: 978-3-642-10707-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics