Skip to main content

Optimal Trading of Classical Communication, Quantum Communication, and Entanglement

  • Conference paper
Book cover Theory of Quantum Computation, Communication, and Cryptography (TQC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5906))

Included in the following conference series:

Abstract

We provide a solution for the most general setting of information processing in the quantum Shannon-theoretic sense by giving optimal trade-offs between classical communication, quantum communication, and entanglement. We begin by showing that a combination of teleportation, superdense coding, and entanglement distribution is the optimal strategy for transmission of information when only the three noiseless resources of classical communication, quantum communication, and entanglement are available. Next, we provide a solution for the scenario where a large number of copies of a noisy bipartite state are available (in addition to consumption or generation of the above three noiseless resources). The coding strategy is an extension of previous techniques in the quantum Shannon-theoretic literature. We finally provide a solution to the scenario where a large number of uses of a noisy quantum channel are available in addition to the consumption or generation of the three noiseless resources. The coding strategy here is the classically-enhanced father protocol, a protocol which we discussed in a previous paper. Our results are of a “ multi-letter” nature, meaning that there might be room for improvement in the coding strategies presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MathSciNet  Google Scholar 

  2. Schumacher, B.: Quantum coding. Physical Review A 51, 2738–2747 (1995)

    Article  MathSciNet  Google Scholar 

  3. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Physical Review A 53, 2046–2052 (1996)

    Article  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Physical Review Letters 69, 2881–2884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters 70, 1895–1899 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Devetak, I., Harrow, A.W., Winter, A.: A resource framework for quantum shannon theory. IEEE Transactions on Information Theory 54(10), 4587–4618 (2008)

    Article  Google Scholar 

  7. Ahlswede, R., Csiszár, I.: Common randomness in information theory and cryptography – part II: Cr-capacity. IEEE Transactions on Information Theory 44, 225–240 (1998)

    Article  MATH  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, New York (2000)

    MATH  Google Scholar 

  9. Hsieh, M.-H., Wilde, M.M.: Trading classical communication, quantum communication, and entanglement in quantum shannon theory. arXiv:0901.3038 (2009)

    Google Scholar 

  10. Devetak, I., Harrow, A.W., Winter, A.J.: A family of quantum protocols. Physical Review Letters 93, 239503 (2004)

    MathSciNet  Google Scholar 

  11. Hsieh, M.-H., Wilde, M.M.: The classically-enhanced father protocol. arXiv:0811.4227 (2008)

    Google Scholar 

  12. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wooters, W.K.: Mixed state entanglement and quantum error correction. Physical Review A 54, 3824–3851 (1996)

    Article  MathSciNet  Google Scholar 

  13. Devetak, I., Shor, P.W.: The capacity of a quantum channel for simultaneous transmission of classical and quantum information. Communications in Mathematical Physics 256(2), 287–303 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Shor, P.W.: The classical capacity achievable by a quantum channel assisted by limited entanglement (2004), quant-ph/0402129

    Google Scholar 

  15. Holevo, A.S.: The capacity of the quantum channel with general signal states. IEEE Transactions on Information Theory 44, 269–273 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Physical Review A 56, 131–138 (1997)

    Article  Google Scholar 

  17. Lloyd, S.: The capacity of a noisy quantum channel. Physical Review A 55, 1613–1622 (1997)

    Article  MathSciNet  Google Scholar 

  18. Shor, P.W.: The quantum channel capacity and coherent information. In: MSRI workshop on quantum computation (2002)

    Google Scholar 

  19. Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Transactions on Information Theory 51(1), 44–55 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hsieh, MH., Wilde, M.M. (2009). Optimal Trading of Classical Communication, Quantum Communication, and Entanglement. In: Childs, A., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2009. Lecture Notes in Computer Science, vol 5906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10698-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10698-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10697-2

  • Online ISBN: 978-3-642-10698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics