Skip to main content

On the Security and Degradability of Gaussian Channels

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5906))

Included in the following conference series:

Abstract

We consider the notion of canonical attacks, which are the cryptographic analog of the canonical forms of a one-mode Gaussian channel. Using this notion, we explore the connections between the degradability properties of the channel and its security for quantum key distribution. Finally, we also show some relations between canonical attacks and optimal Gaussian cloners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braunstein, S.L., van Loock, P.: Rev. Mod. Phys.  77, 513 (2005)

    Google Scholar 

  2. Hillery, M.: Phys. Rev. A.  61, 022309 (2000); Ralph, T.C.: Phys. Rev. A  61, 010303(R) (2000)

    Google Scholar 

  3. Grosshans, F., Grangier, P.: Phys. Rev. Lett.  88, 057902 (2002); Grosshans, F., et al.: Nature 421, 238 (2003)

    Google Scholar 

  4. Weedbrook, C., et al.: Phys. Rev. Lett.  93, 170504 (2004); Lance, A.M., et al.: Phys. Rev. Lett.  95, 180503 (2005)

    Google Scholar 

  5. Pirandola, S., Braunstein, S.L., Lloyd, S.: Phys. Rev. Lett.  101, 200504 (2008)

    Google Scholar 

  6. Pirandola, S., Garcia-Patron, R., Braunstein, S.L., Lloyd, S.: Phys. Rev. Lett.  102, 050503 (2009)

    Google Scholar 

  7. Pirandola, S., Mancini, S., Lloyd, S., Braunstein, S.L.: Nature Physics 4, 726 (2008)

    Google Scholar 

  8. Pirandola, S., et al.: Europhys. Lett.  84, 20013 (2008); arXiv:0903.0750

    Google Scholar 

  9. Holevo, A.S.: Probl. Inform. Transm. 43, 1 (2007)

    Article  Google Scholar 

  10. Serafini, A., et al.: Phys. Rev. A  71, 012320 (2005)

    Google Scholar 

  11. Caruso, F., et al.: New Journal of Physics  8, 310 (2006); Caruso, F., Giovannetti, V.: Phys. Rev. A 74, 062307 (2006)

    Google Scholar 

  12. In particular, class C describes an attenuator for 0 < τ< 1 and an amplifier for τ> 1. Class B 2 includes the ideal channel for r = 0

    Google Scholar 

  13. Cerf, N.J., et al.: Phys. Rev. Lett.  85, 1754 (2000)

    Google Scholar 

  14. A physical representation is a unitary dilation of the quantum channel where the environmental state ρ E can be (generally) mixed [11] (see also Ref. [21]). It is not unique up to partial isometries, except when it coincides with a Stinespring dilation (i.e., ρ E is pure)

    Google Scholar 

  15. The class B 2 is the unique class which is neither anti-degradable nor degradable [9]

    Google Scholar 

  16. Devetak, I., Shor, P.W.: Commun. Math. Phys.  256, 287 (2005)

    Google Scholar 

  17. Grosshans, F., et al.: Quant. Inf. and Comp.  3, 535 (2003)

    Google Scholar 

  18. In Fig. 2 the discontinuity of \( \varepsilon ^{\blacktriangleleft }=\varepsilon ^{\blacktriangleleft }(\tau )\) at τ= 0 is due to the limit μ→ + ∞, taken for every finite and non-zero τ. For every finite μ, the curve converges to zero in a continuous way

    Google Scholar 

  19. Filip, R.: Phys. Rev. A  77, 032347 (2008)

    Google Scholar 

  20. Notice that, in order to be optimal in DR, the individual OGC attack ignores the measurement of the anticlone. It is not known if such a further measurement can be useful in the eavesdropping of the protocol in RR

    Google Scholar 

  21. Holevo, A.S.: Probl. Inform. Transm. Inform.  8, 63 (1972); Lindblad, G.: Commun. Math. Phys. 48, 116 (1976)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pirandola, S., Braunstein, S.L., Lloyd, S. (2009). On the Security and Degradability of Gaussian Channels. In: Childs, A., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2009. Lecture Notes in Computer Science, vol 5906. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10698-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10698-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10697-2

  • Online ISBN: 978-3-642-10698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics