Skip to main content

Immune Systems Inspired Approach to Anomaly Detection, Fault Localization and Diagnosis in Automotive Engines

  • Chapter
Applications of Neural Networks in High Assurance Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 268))

Abstract

As more electronic devices are integrated into automobiles to improve the reliability, drivability and maintainability, automotive diagnosis becomes increasingly difficult. Unavoidable design defects, quality variations in the production process as well as different usage patterns make it is infeasible to foresee all possible faults that may occur to the vehicle. As a result, many systems rely on limited diagnostic coverage provided by a diagnostic strategy which tests only for a priori known or anticipated failures, and presumes the system is operating normally if the full set of tests is passed. To circumvent these difficulties and provide a more complete coverage for detection of any fault, a new paradigm for design of automotive diagnostic systems is needed. An approach inspired by the functionalities and characteristics of natural immune system is presented and discussed in the paper. The feasibility of the newly proposed paradigm is also demonstrated through application examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rao, B.: Handbook of Condition Monitoring. Elsevier Advanced Technology (1996)

    Google Scholar 

  2. Randall, R.B.: State of the art in monitoring rotating machinery – part 1. Sound and Vibration 38(3), 14–21 (2004)

    Google Scholar 

  3. Randall, R.B.: State of the art in monitoring rotating machinery - part 2. Sound and Vibration 38(5), 10–17 (2004)

    Google Scholar 

  4. Hofmeyr, S., Forrest, S.: Architecture for an artificial immune system. Evolutionary Computation 8(4), 443–473 (2000)

    Article  Google Scholar 

  5. Denning, D.: An intrusion detection model. IEEE Transactions of Software Engineering, SE-13(2), 222–232 (1987)

    Google Scholar 

  6. Kim, Y.-W., Rizzoni, G., Utkin, V.: Automotive engine diagnosis and control via nonlinear estimation. IEEE Control Systems Magazine 18(5), 84–97 (1998)

    Article  Google Scholar 

  7. Patton, R., Frank, P.M., Clark, R.N.: Issues of Fault Diagnosis for Dynamic Systems. Springer, New York (1996)

    Google Scholar 

  8. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis part I: Quantitative model-based methods. Computers and Chemical Engineering 27(3), 293–311 (2003)

    Article  Google Scholar 

  9. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.N.: A review of process fault detection and diagnosis part II: Qualitative models and search strategies. Computers and Chemical Engineering 27(3), 313–326 (2003)

    Article  Google Scholar 

  10. Brotherton, T., Johnson, T.: Anomaly detection for advanced military aircraft using neural networks. In: Proc. of the IEEE Aerospace Conference, vol. 6, pp. 3113–3123 (2001)

    Google Scholar 

  11. Liu, J., Djurdjanovic, D., Marko, K.A., Ni, J.: A Novel Method for Anomaly Detection, Localization and Fault Isolation for Dynamic Control Systems. Submitted to Mechanical Systems and Signal Processing (in review), Paper no. MSSP07-153 (2007)

    Google Scholar 

  12. Anderson, J.P.: Computer security threat monitoring and surveillance. Technical Report, James P. Anderson Company (1980)

    Google Scholar 

  13. Estevez-Tapiador, J.M., Garcia-Teodoro, P., Diaz-Verdejo, J.E.: Anomaly detection methods in wired networks: A survey and taxonomy. Computer Communications 27(16), 1569–1584 (2004)

    Article  Google Scholar 

  14. Lunt, T.F.: Survey of intrusion detection techniques. Computers & Security 12(4), 405–418 (1993)

    Article  Google Scholar 

  15. Haykin, S.S.: Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  16. Cho, K.B., Wang, B.H.: Radial basis function based adaptive fuzzy systems and their applications to system identification and prediction. Fuzzy Sets and Systems 83(3), 325–339 (1996)

    Article  MathSciNet  Google Scholar 

  17. Han, M., Xi, J., Xu, S., Yin, F.-L.: Prediction of chaotic time series based on the recurrent predictor neural network. IEEE Transactions on Signal Processing 52(12), 3409–3416 (2004)

    Article  MathSciNet  Google Scholar 

  18. Leung, H., Lo, T., Wang, S.: Prediction of noisy chaotic time series using an optimal radial basis function neural network. IEEE Transactions on Neural Networks 12(5), 1163–1172 (2001)

    Article  Google Scholar 

  19. Connor, J.T., Martin, R.D., Atlas, L.: Recurrent neural networks and robust time series prediction. IEEE Transactions on Neural Networks 5(2), 240–253 (1994)

    Article  Google Scholar 

  20. Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc. of the IEEE Conference 86(11), 2240–2258 (1998)

    Google Scholar 

  21. Kim, S.-P., Sanchez, J.C., Erdogmus, D., Rao, Y.N., Wessberg, J., Principe, J.C., Nicolelis, M.: Divide-and-conquer approach for brain machine interfaces: Nonlinear mixture of competitive linear models. Neural Networks 16(5-6), 865–871 (2003)

    Article  Google Scholar 

  22. Roemer, M., Nwadiogbu, E., Bloor, G.: Development of diagnostic and prognostic technologies for aerospace health management applications. In: Proc. of 2001 IEEE Aerospace Conference, vol. 6, pp. 3139–3147 (2001)

    Google Scholar 

  23. Brotherton, T., Grabill, P., Wroblewski, D., Friend, R., Sotomayer, B., Berry, J.: A testbed for data fusion for engine diagnostics and prognostics. In: Proc. of 2002 IEEE Aerospace Conference, vol. 6, pp. 3029–3042 (2002)

    Google Scholar 

  24. Hosseini, M.M., Kerr, R.M., Randall, R.B.: Inspection model with minimal and major maintenance for a system with deterioration and Poisson failures. IEEE Transactions on Reliability 49(1), 88–98 (2000)

    Article  Google Scholar 

  25. Stengel, R.: Intelligent failure-tolerant control. In: Proc. of the 5th IEEE International Symposium on Intelligent Control, pp. 548–557. IEEE Comput. Soc. Press, Los Alamitos (1990)

    Chapter  Google Scholar 

  26. Gao, Z., Antsaklis, P.: On the stability of the pseudo-inverse method for reconfigurable control systems. In: Proc. of the IEEE National Aerospace and Electronics Conference, pp. 333–337 (1989)

    Google Scholar 

  27. Kim, Y.-W., Rizzoni, G., Utkin, V.: Developing a fault tolerant powertrain control system by integrating design of control and diagnostics. International Journal of Robust and Nonlinear Control 11(11), 1095–1114 (2001)

    Article  MATH  Google Scholar 

  28. Noura, H., Ponsart, J.-C., Theilliol, D.: Sensor fault-tolerant control method applied to a winding machine. In: Proc. of Fault Detection, Supervision and Safety for Technical Processes, vol. 3, pp. 777–782. Elsevier Sci., Amsterdam (2001)

    Google Scholar 

  29. Rauch, H.: Autonomous control reconfiguration. IEEE Control Systems Magazine 15(6), 37–48 (1995)

    Article  Google Scholar 

  30. Yen, G., Ho, L.-W.: On-line intelligent fault-tolerant control for catastrophic system failures. In: Proc. of the SPIE, Component and Systems Diagnostics, Prognosis, and Health Management, vol. 4389, pp. 35–46 (2001)

    Google Scholar 

  31. Diallo, D., Benbouzid, M., Makouf, A.: A fault-tolerant control architecture for induction motor drives in automotive applications. IEEE Transactions on Vehicular Technology 53(6), 1847–1855 (2004)

    Article  Google Scholar 

  32. Ichtev, A., Hellendoorn, J., Babuska, R., Mollov, S.: Fault-tolerant model-based predictive control using multiple takagi-sugeno fuzzy models. In: 2002 IEEE International Conference on Fuzzy Systems, vol. 1, pp. 346–351 (2002)

    Google Scholar 

  33. Lee, J.: Machine Performance Monitoring and Proactive Maintenance in Computer-Integrated Manufacturing: Review and Perspective. International Journal of Computer Integrated Manufacturing 8(5), 370–380 (1995)

    Article  Google Scholar 

  34. Liu, J., Djurdjanovic, D., Marko, K.A., Ni, J.: Growing structure multiple model system for anomaly detection and fault diagnosis. To appear in Transactions of ASME, Journal of Dynamic Systems, Measurements and Control, Paper no. DS-06-1152 (2009)

    Google Scholar 

  35. Fritzke, B.: Growing cell structures - a self-organizing network for unsupervised and supervised learning. Neural Networks 7(9), 1441–1460 (1994)

    Article  Google Scholar 

  36. Fritzke, B.: A growing neural gas network learns topologies. In: Proc. of Advances in Neural Information Processing Systems, vol. 7, pp. 625–632. MIT Press, Cambridge (1995)

    Google Scholar 

  37. Ikonen, E., Najim, K.: Advanced process identification and control. Marcel Dekker, New York (2002)

    Google Scholar 

  38. Liu, J., Sun, P., Djurdjanovic, D., Marko, K.A., Ni, J.: Growing structure multiple model system based anomaly detection for crankshaft monitoring. In: Proc. of International Symposium on Neural Networks (2006)

    Google Scholar 

  39. Montgomery, D.C.: Introduction to statistical quality control, 4th edn. John Wiley, New York (2001)

    Google Scholar 

  40. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Djurdjanovic, D., Liu, J., Marko, K.A., Ni, J. (2010). Immune Systems Inspired Approach to Anomaly Detection, Fault Localization and Diagnosis in Automotive Engines. In: Schumann, J., Liu, Y. (eds) Applications of Neural Networks in High Assurance Systems. Studies in Computational Intelligence, vol 268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10690-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10690-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10689-7

  • Online ISBN: 978-3-642-10690-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics