Skip to main content

Finite Element Techniques for Rolling Rubber Wheels

  • Chapter
Elastomere Friction

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 51))

Abstract

Arbitrary Lagrangian Eulerian (ALE) methods provide a well established basis for the numerical analysis of rolling contact problems. Whereas the theoretical framework is well developed for elastic constitutive behavior, special measures are necessary for the computation of dissipative effects like inelastic properties and friction because the path of material points is not traced inherently. In this presentation a fractional step approach is suggested for the integration of the evolution equations for internal variables. A Time-Discontinuous Galerkin (TDG) method is introduced for the numerical solution of the related advection equations. Furthermore, a mathematically sound approach for the treatment of frictional rolling within the ALE description is suggested. By this novel and fully implicit algorithm the slip velocities are integrated along their path-lines. For dissipative effects due to both, inelastic behavior and friction, physical reliable results will be demonstrated as well as the computability of large scaled finite element tire-models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baines, M.J.: A survey of numerical schemes for advection, the shallow water equations and dambreak problems. In: Proceedings of the 1st CADAM Workshop, Wallingford (1998)

    Google Scholar 

  2. Bauer, R.E.: Discontinuous Galerkin methods for ordinary differential equations, Master’s Thesis, University of Northern Colorado (1995)

    Google Scholar 

  3. Bayoumi, H.N., Gadala, M.S.: A complete finite element treatment for the fully coupled implicit ALE formulation. Computational Mechanics 33, 435–452 (2004)

    Article  MATH  Google Scholar 

  4. Benson, D.: An efficient accurate simple ALE method for nonlinear finite element programs. Computer Methods in Applied Mechanical Engineering 72, 305–350 (1989)

    Article  MATH  Google Scholar 

  5. Benson, D.: Computational methods in Lagrangian and Eulerian hydrocodes. Computer Methods in Applied Mechanical Engineering 99, 235–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blab, R., Harvey, J.T.: Modeling measured 3d tire contact stresses in a viscoelastic FE-pavement model. The International Journal of Geomechanics 2(3), 271–290 (2002)

    Article  Google Scholar 

  7. Carter, F.W.: On the action of a locomotive driving wheel. Proceedings of the Royal Society London A 122, 151–157 (1926)

    Article  Google Scholar 

  8. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. In: Cockburn, B., Karniadakis, G.E., Shu, W. (eds.) Discontinuous Galerkin Methods, pp. 3–50. Springer, Heidelberg (2000)

    Google Scholar 

  9. Davy, F.: Modelling and numerical simulation of filled rubber, Master’s Thesis, Leibniz Universität Hannover (2006)

    Google Scholar 

  10. Donea, J., Huerta, A., Ponthot, J.P., Rodriguez-Ferran, A.: Arbitrary Lagrangian–Eulerian methods. In: Stein, E., de Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics. Fundamentals, vol. 1, pp. 414–437. John Wiley & Sons, Chichester (2004)

    Google Scholar 

  11. Faria, L.O., Oden, J.T., Yavari, B., Tworzydlo, W., Bass, J.M., Becker, E.B.: Tire modeling by finite elements. Tire Science & Technology 20, 33–56 (1992)

    Article  Google Scholar 

  12. Fressmann, D., Wriggers, P.: Advection approaches for single- and multi-material arbitrary Lagrangian–Eulerian finite element procedures. Computational Mechanics 39, 153–190 (2005)

    Article  Google Scholar 

  13. Gadala, M.S.: Recent trends in ALE-formulation and its applications in solid mechanics. Computer Methods in Applied Mechanical Engineering 193, 4247–4275 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  14. Godunov, S.: Finite difference method for numerical computation of discontinuous solutions of the equation of fluid dynamics. Math. Sbornik 47, 272–306 (1959)

    MathSciNet  Google Scholar 

  15. Guo, Z., Sluys, L.J.: Computational modelling of the stress-softening phenomenon of rubber-like materials under cyclic loading. European Journal of Mechanics A/Solids 25, 877–896 (2006)

    Article  MATH  Google Scholar 

  16. Hartmann, S.: Finite-elemente Berechnung inelastischer Kontinua. Universität Kassel, Habilitation (2003)

    Google Scholar 

  17. Heinrich, G., Kaliske, M.: Theoretical and numerical formulation of a molecular based constitutive tube-model of rubber elasticity. Computational and Theoretical Polymer Science 7, 227–241 (1998)

    Article  Google Scholar 

  18. Hu, G., Wriggers, P.: On the adaptive finite element model of steady-state rolling contact for hyperelasticity in finite deformations. Computer Methods in Applied Mechanics and Engineering 191, 1333–1348 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hughes, T.J.R., Hulbert, G.M.: Space-time finite element methods for elastodynamics. Computer Methods in Applied Mechanical Engineering 66, 339–363 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  20. Koehne, S.H., Matute, B., Mundl, R.: Evaluation of tire tread and body interactions in the contact patch. Tire Science & Technology 31(3), 159–172 (2003)

    Article  Google Scholar 

  21. Kolditz, O.: Computational Methods in Environmental Fluid Mechanics. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  22. Laursen, T.A.: Computational Contact and Impact Mechanics. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  23. Le Tallec, P., Rahier, C.: Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. International Journal on Numerical Methods in Engineering 37, 1159–1186 (1994)

    Article  MATH  Google Scholar 

  24. Nackenhorst, U.: The ALE-formulation of bodies in rolling contact – Theoretical foundations and finite element approach. Computer Methods in Applied Mechanical Engineering 193(39-41), 4299–4322 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  25. Nasdala, L., Kaliske, M., Becker, A., Rothert, H.: An efficient viscoelastic formulation for steady-state rolling. Computational Mechanics 22, 395–403 (1998)

    Article  MATH  Google Scholar 

  26. Oden, J.T., Lin, T.L.: On the general rolling contact problem for finite deformations of a viscoelastic cylinder. Computer Methods in Applied Mechanical Engineering 57, 297–367 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  27. Ogden, R.W., Roxburgh, D.G.: A pseudo-elastic model for the Mullins effect in filled rubber. Proceedings of the Royal Society London A 455, 459–490 (1999)

    MathSciNet  Google Scholar 

  28. Rodriguez-Ferran, A., Casadei, F., Huerta, A.: ALE stress update for transient and quasistatic processes. International Journal on Numerical Methods in Engineering 43, 241–262 (1998)

    Article  MATH  Google Scholar 

  29. Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with Pardiso. Journal of Future Generation Computer Systems 20(3), 475–487 (2004)

    Article  Google Scholar 

  30. Shakib, F., Hughes, T.J.R.: A new finite element formulation for computational fluid dynamics: IX. Fourier analysis of space-time Galerkin/least-squares algorithms. Computer Methods in Applied Mechanics and Engineering 87, 35–58 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Simo, J.C.: On a fully three-dimensional finite-strain viscoelastic damage model. Computer Methods in Applied Mechanical Engineering 60, 153–173 (1987)

    Article  MATH  Google Scholar 

  32. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  33. Stanciulescu, I., Laursen, T.: On the interaction of frictional formulations with bifurcation phenomena in hyperelastic steady state rolling calculations. International Journal of Solids and Structures 43, 2959–2988 (2006)

    Article  MATH  Google Scholar 

  34. Stoker, C.: Developments of the arbitrary Lagrangian–Eulerian method in non-linear solid mechanics, PhD Thesis, University Twente (1999)

    Google Scholar 

  35. Wriggers, P.: Finite element algorithms for contact problems. Archives of Computer Methods in Engineering 2, 1–49 (1995)

    Article  MathSciNet  Google Scholar 

  36. Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  37. Ziefle, M.: Numerische Konzepte zur Behandlung inelastischer Effekte beim reibungsbehafteten Rollkontakt, PhD Thesis, Leibniz Universität, Hannover (2007)

    Google Scholar 

  38. Ziefle, M., Nackenhorst, U.: An internal variable update proceedure for the treatment of inelastic material behavior within an ALE-description of rolling contact. Applied Mechanics and Materials 9, 157–171 (2008)

    Article  Google Scholar 

  39. Ziefle, M., Nackenhorst, U.: Numerical techniques for rolling rubber wheels – Treatment of inelastic material properties and frictional contact. Computational Mechanics 43, 337–356 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nackenhorst, U., Ziefle, M., Suwannachit, A. (2010). Finite Element Techniques for Rolling Rubber Wheels. In: Besdo, D., Heimann, B., Klüppel, M., Kröger, M., Wriggers, P., Nackenhorst, U. (eds) Elastomere Friction. Lecture Notes in Applied and Computational Mechanics, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10657-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10657-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10656-9

  • Online ISBN: 978-3-642-10657-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics