Skip to main content

Connecting the Dots: Constructing Spatiotemporal Episodes from Events Schemas

  • Chapter
Transactions on Computational Science VI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 5730))

  • 736 Accesses

Abstract

This paper introduces a novel framework for deriving and mining high–level spatiotemporal process models in in-situ sensor measurements. The proposed framework is comprised of two complementary components, namely, hierarchical event schemas and spatiotemporal episodes. Event schemas are used in this work as the basic building model of spatiotemporal processes while episodes are used for organizing events in space and time in a consistent manner. The construction of event schemas is carried out using scale-space analysis from which the interval tree, a hierarchical decomposition of the data, is derived. Episodes are constructed from event schemas using by formulating the problem as a constraint network, in which spatial and temporal constraints are imposed. Consistency is achieved using a path–consistency algorithm. Once created, possible episodes can be derived from the network using a shortest–path search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zacks, J.M., Tversky, B., Iyer, G.: Perceiving, remebering, and communicating structure in events. Journal of Experimental Psychology 130(1), 29–58 (2001)

    Google Scholar 

  2. Hard, B.M., Tversky, B., Lang, D.S.: Making sense of abstract events: Building event schemas. Memory and Cognition 34(6), 1221–1235 (2006)

    Google Scholar 

  3. Worboys, M., Hornsby, K.: From objects to events: Gem, the geospatial event model. In: Egenhofer, M.J., Freksa, C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 327–343. Springer, Heidelberg (2004)

    Google Scholar 

  4. Yuan, M., McIntosh, J.: Assessing similarity of geographic processes and events. Transactions in GIS 9(2), 223–245 (2005)

    Article  Google Scholar 

  5. Peuquet, D.J., Duan, N.: An event-based spatiotemporal data model (estdm) for temporal analysis of geographical data. International Journal of Geographical Information Science 9(1), 7–24 (1995)

    Article  Google Scholar 

  6. Reistma, F., Bittner, T.: Scale in object and process ontologies. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 13–27. Springer, Heidelberg (2003)

    Google Scholar 

  7. Grenon, P., Smith, B.: Towards dynamic spatial ontology. Spatial Cognition and Computation 4(1), 69–103 (2004)

    Article  Google Scholar 

  8. Gerevini, A., Schubert, L.K.: Efficient algorithms for qualitative reasoning about time. Artificial Intelligence 74(2), 207–248 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ghallab, M., Nau, D., Traverso, P.: Automated planning. Morgan Kaufmann Publishers, Boston (2004)

    MATH  Google Scholar 

  10. Wallinga, J.P., Pettirew, N.R., Irish, J.D.: The gomoos moored buoy design. In: Proceedings of OCEANS 2003, September 22-26, vol. 5, pp. 2596–2599 (2003)

    Google Scholar 

  11. GoMOOS: Gulf of maine ocean observing system, http://www.gomoos.org (Last visited November 21, 2008)

  12. NOAA: National weather service forecast office - gray/portland, http://erh.noaa.gov/gyx/patriot_day_storm_2007.html (Last visited February 21, 2008)

  13. Clark, W.C.: Scales in climate impacts. Climage Change 7, 5–27 (1985)

    Article  Google Scholar 

  14. Holling, C.S.: Cross-scale morphology, geometry, and dynamics of ecosystems. Ecological Monographs 6(4), 447–502 (1992)

    Article  Google Scholar 

  15. Peuquet, D.J.: Making space for time: Issues in space-time data representation. GeoInformatica 5(1), 11–32 (2001)

    Article  MATH  Google Scholar 

  16. Yuan, M.: Geographic information systems (gis) approaches for geographic dynamics understanding and event prediction. In: Suresh, R. (ed.) Defense Transformation and Net-Centric Systems. 65781(A) of SPIE, vol. 6578 (2007)

    Google Scholar 

  17. Peuquet, D.J.: It‘s about time: A conceptual framework for the representation of temporal dynamics in geographic information systems. Annals of the Association of American Geographers 84(3), 441–461 (1994)

    Article  Google Scholar 

  18. Whigham, P.A.: Hierarchies of space and time. In: Frank, A.U., Campari, I. (eds.) COSIT 1993. LNCS, vol. 716, pp. 190–201. Springer, Heidelberg (1993)

    Google Scholar 

  19. Yuan, M.: Representing complex geographic phenomena in gis. Cartography and Geographic Information Science 28(2), 83–96 (2001)

    Article  Google Scholar 

  20. Höppner, F.: Learning dependencies in multivariate time series. In: Proceedings of the ECAI 2002 Workshop on Knowledge Discovery in (Spatio-) Temporal Data, Lyon, France, pp. 25–31 (2002)

    Google Scholar 

  21. Höppner, F.: Discovery of temporal patterns – learning rules about the qualitative behavior of time series. In: Proceedings of the 5th European Conference on Principles and Practice of Knowledge Discovery in Databases, Freiburg, Germany, pp. 192–203 (2001)

    Google Scholar 

  22. Gerevini, A.: Processing qualitative temporal constraints, pp. 247–276. Elsevier, Amsterdam (2005)

    Google Scholar 

  23. Schwalb, E., Dechter, R.: Processing temporal constraint networks. Artificial Intelligence 93, 29–61 (1995)

    Article  MathSciNet  Google Scholar 

  24. Schwalb, E., Vila, L.: Temporal constraints: a survey. Constraints: an International Journal 2, 129–149 (1998)

    Article  MathSciNet  Google Scholar 

  25. Hall, S., Hornsby, K.: Ordering events for dynamic geospatial domains. In: Cohn, A.G., Mark, D.M. (eds.) COSIT 2005. LNCS, vol. 3693, pp. 330–346. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. Croitoru, A.: Deriving and mining spatiotemporal event schemas in in-situ sensor data. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 740–755. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  27. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Springer International Series in Engineering and Computer Science, vol. 256, 444 pages. Springer, Heidelberg (1994)

    Google Scholar 

  28. Witkin, A.P.: Scale-space filtering. In: International Joint Conference on Artificial Intelligence, pp. 1019–1023 (1983)

    Google Scholar 

  29. Mokhtarian, F., Mackworth, A.: Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Knowledge and Data Engineering 8(1), 34–43 (1986)

    Google Scholar 

  30. Yuille, A.L., Poggio, T.: Scaling theorems for zero-crossings. A.I. Memo 722, Massachusettes Institute of Technology, June 1983, 23 pages (1983)

    Google Scholar 

  31. Wu, L., Xie, Z.: Scaling theorems for zero-crossings. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 46–54 (1990)

    Article  Google Scholar 

  32. Anh, V., Shi, Y., Tsui, H.T.: Scaling theorems for zero-crossings of bandlimited signals. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(3), 309–320 (1996)

    Article  Google Scholar 

  33. Yuille, A.L., Poggio, T.: Fingerprints theorems for zero-crossings. Journal of the Optical Society of America A 2(5), 683–692 (1985)

    Article  MathSciNet  Google Scholar 

  34. Wada, T., Sato, M.: Scale-space tree and its hierarchy. In: 10th International Conference on Pattern Recognition, pp. 103–108 (1990)

    Google Scholar 

  35. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  36. Bille, P.: A survey on tree edit distance and related problems. Theoretical Computer Science 337(2005), 217–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  37. Shasha, D., Zhang, K.: Approximate tree pattern matching. In: Pattern Matching Algorithms, pp. 341–371. Oxford University Press, Oxford (1997)

    Google Scholar 

  38. Giugno, R., Shasha, D.: Graphgrep: A fast and universal method for querying graphs. In: Proceedings of the 16th International Conference on Pattern Recognition (ICPR 2002), Quebec, Canada, August 2002, vol. 2, pp. 112–115 (2002)

    Google Scholar 

  39. Shasha, D., Wang, J., Giugno, R.: Algorithmics and applications of tree and graph searching. In: 21st ACM Symposium on Principles of Database Systems (SIGMOD-PODS 2002), Madison, Wisconsin, USA, June 3-6, 2002, pp. 39–52. ACM, New York (2002)

    Google Scholar 

  40. Dechter, R., Meiri, I., Pearl, J.: Temporal constraints networks. Artifical Intelligence 49(1991), 61–95 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  41. Bliek, C., Sam–Haroud, D.J.: Path consistency on triangulated constraint graphs. In: Dean, T. (ed.) In Proc. of the Sixteenth International Joint Conference on Artificial Intelligence, pp. 456–461. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  42. Mackworth, A.K.: Consistency in networks of relations. Artifical Intelligence 8(1977), 99–118 (1977)

    Article  MATH  Google Scholar 

  43. Dechter, R.: Constraint processing, 481 pages. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  44. Xu, L., Choueiry, B.: A new efficient algorithm for solving the simple temporal problem. In: 10th International Symposium on Temporal Representation and Reasoning and Fourth International Conference on Temporal Logic (TIME-ICTL 2003), pp. 212–222. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  45. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1(1959), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  46. Fritsch, F.N., Carlson, R.E.: Monotone piecewise cubic interpolation. SIAM Journal of Numerical Analysis 17(2), 238–246 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  47. NOAA: National data buoy center, http://www.ndbc.noaa.gov/.html (Last visited November 23, 2008)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Croitoru, A. (2009). Connecting the Dots: Constructing Spatiotemporal Episodes from Events Schemas. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VI. Lecture Notes in Computer Science, vol 5730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10649-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10649-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10648-4

  • Online ISBN: 978-3-642-10649-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics