Skip to main content

Wavelet Analysis of Spike Train in the Fitzhugh Model

  • Chapter
Book cover Transactions on Computational Science VI

Part of the book series: Lecture Notes in Computer Science ((TCOMPUTATSCIE,volume 5730))

Abstract

This paper deals with the analysis of the wavelet coefficients for the nonlinear dynamical system which models the axons activity. A system with source made by a sequence of high pulses (spike train) is analyzed in dependence of the amplitude. The critical value of the amplitude, and a catastrophe are analyzed. The wavelet coefficients are computed and it is shown also that they are very sensitive to the local changes and can easily detect the spikes even on a nearly smooth function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve membrane. Biophys. Journal 1, 445–466 (1961)

    Article  Google Scholar 

  2. Nagumo, J., Arimoto, S., Yoshizawa, S.: An active pulse transmission line simulating nerve axon. Proc. Inst. Radio Eng. 50, 2061–2070 (1962)

    Google Scholar 

  3. Cattani, C.: Haar Wavelet based Technique for Sharp Jumps Classification. Mathematical Computer Modelling 39, 255–279 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cattani, C.: Haar wavelets based technique in evolution problems. Proc. Estonian Acad. of Sciences, Phys. Math. 53(1), 45–63 (2004)

    MATH  MathSciNet  Google Scholar 

  5. Cattani, C.: Wavelet approach to Stability of Orbits Analysis. International Journal of Applied Mechanics 42(6), 136–142 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Cattani, C., Rushchitsky, J.J.: Wavelet and Wave Analysis as applied to Materials with Micro or Nanostructure. Advances in Mathematics for Applied Sciences, p. 74. World Scientific, Singapore (2007)

    MATH  Google Scholar 

  7. Cattani, C., Scalia, M.: Wavelet Analysis of pulses in the Fitzhugh model. In: Gervasi, O., Murgante, B., Laganà, A., Taniar, D., Mun, Y., Gavrilova, M.L. (eds.) ICCSA 2008, Part I. LNCS, vol. 5072, pp. 1191–1201. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. El Boustani, S., Pospischil, M., Rudolph-Lilith, M., Destexhe, A.: Activated cortical states: Experiments, analyses and models. Journal of Physiology, 99–109 (2007)

    Google Scholar 

  9. Georgiev, N.V.: Identifying generalized FitzhughNagumo equation from a numerical solution of Hodgkin-Huxley model. Journal of Applied Mathematics, 397–407 (2003)

    Google Scholar 

  10. Guckenheimer, J., Labouriau, I.S.: Bifurcation of the Hodgkin and Huxley equations: a new twist. Bull. Math. Biol., 937–952 (1993)

    Google Scholar 

  11. Hassard, B.: Bifurcation of periodc solutions of the Hodgkin-Huxley model for the squid gain axon. J. Teor. Biol., 401–420 (1978)

    Google Scholar 

  12. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116, 449–472 (1952)

    Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. 116, 473–496 (1952)

    Google Scholar 

  14. Hodgkin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. 116, 497–506 (1952)

    Google Scholar 

  15. Rinzel, J., Miller, R.N.: Numerical calculation of stable and unstable solutions to the Hodgkin-Huxley equations. Math Biosci., 27–59 (1980)

    Google Scholar 

  16. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Toma, C.: An Extension of the Notion of Observability at Filtering and Sampling Devices. In: Proceedings of the International Symposium on Signals, Circuits and Systems Iasi SCS 2001, Romania, pp. 233–236 (2001)

    Google Scholar 

  18. Toma, G.: Practical Test Functions Generated by Computer Algorithms. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 576–584. Springer, Heidelberg (2005)

    Google Scholar 

  19. Wang, J., Chen, L., Fei, X.: Analysis and control of the bifurcation of Hodgkin-Huxley model. Chaos, Solitons and Fractals, 247–256 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cattani, C., Scalia, M. (2009). Wavelet Analysis of Spike Train in the Fitzhugh Model. In: Gavrilova, M.L., Tan, C.J.K. (eds) Transactions on Computational Science VI. Lecture Notes in Computer Science, vol 5730. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10649-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10649-1_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10648-4

  • Online ISBN: 978-3-642-10649-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics