Skip to main content

Modelling the Impact of Climate Change and Irrigation by the Geographic Law of Soil Zonality

  • Chapter
  • First Online:
  • 485 Accesses

Part of the book series: Environmental Science and Engineering ((ESE))

Abstract

In order to quantify the impact of climate change on soil fertility, it is possible to apply a mathematical simulation of the relationship between some soil properties (f) and mean annual climatic conditions (I) at the present time. The relationship f(I) can be quantitatively based on the geographical law of soil zonality [1–4] which says that the distribution of the world’s main soil types correlates with climate. In other words, the relationship f(I) reflects a permanent equilibrium between virgin soil and climate. In the case of a rather slow climatic change, the relationship f(I) (corresponding to geomorphologically homogeneous groups of soils with similar texture and subsoil mineralogy) should always be conserved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. V. V. Dokuchaev, Russian chernozems (Russkii chernozem). Israel Prog. Sci. Trans., Jerusalem, (1967). Transl. from Russian by N. Kraner. Available from U.S. Department of Commerce, Springfield, VA (1883).

    Google Scholar 

  2. A. A. Grigor’ev, Some regularities of geographical zonality, Izv. Akad. Nauk SSSR, Ser. Geogr., 5, 5–17, Russia (in Russian) (1954).

    Google Scholar 

  3. H. Jenny, Factors of Soil Formation. A System of Quantitative Pedology, McGraw-Hill, New York (1941).

    Google Scholar 

  4. V. R. Volobuev, Introduction into the Energy of Pedogenesis, Nauka, Russia (in Russian) (1974).

    Google Scholar 

  5. Y. Nikolskii, O. Bakhlaeva, A. Contreraz-Benitez, and V. Ordaz-Chaparro, Assessment of changes in soil properties as dependent on hydrothermic conditions of lowlands (by the Example of Mexico). Eurasian Soil Science, 35, 1031–1036 (2002).

    Google Scholar 

  6. W. D. Sellers, Physical Climatology, University of Ontario Press, Chicago, USA (1965).

    Google Scholar 

  7. M. A.Tejeda, I. L. Vazquez, and D. A. Rivas, Algoritmos simples para estimar datos mensuales de irradiacion solar y horarios termohigrometricos en la Republica Mexicana. University of Veracruzana, Mexico; Torres, R.E. 1995. Agrometeorologia, Mexico (1999).

    Google Scholar 

  8. I. P. Aydarov, Water, salt and nutrient soil regime management in arid zones. Agropromizdat, Moscow, Russia (in Russian) (1985).

    Google Scholar 

  9. M. Castillo-Alvarez, I. Nikolskii-Gavrilov, C. A. Ortiz-Solorio, H. Vaquera-Huerta, G. Cruz- Bello, E. Mejía-Sáenz, and A. González-Hernández, Alteración de la fertilidad del suelo por el cambio climático y su efecto en la productividad agrícola. Interciencia, 32, 368–376 (2007).

    Google Scholar 

  10. R. W. Arnold, I. Szabolcs, and V. O. Targulian (eds.), Global Soil Change. IIASA, Laxenburg, Austria, 109 pp. (1990).

    Google Scholar 

  11. F. Bazzaz and W. Sombroek, Global Climate Change and Agricultural Production: Direct and Indirect Effects of Changing Hydrological, Pedological and Plant Physiological Processes, FAO, Italy (1996).

    Google Scholar 

  12. W. Knorr, I. C. Prentice, and E. A. Holland, Long-term sensitivity of soil carbon turnover to warming. Nature, 433, 298–301 (2005).

    Article  CAS  Google Scholar 

  13. M. Reichstein, T. Kätterer, O. Andren, P. Ciasis, E. D. Schuize, W. Cramer, D. Papale, and R. Valentini, Does the temperature sensitivity of descomposition vary with soil organic matter quality? Biogeosciences Discussions, 2, 738–747 (2005).

    Article  Google Scholar 

  14. S. A. Pegov and P. M. Khomyakov, Simulation of Ecological Systems Alteration. Gidrometeoizdat, Leningrad, Russia (in Russian) (1991).

    Google Scholar 

  15. C. Gay (ed.), Una visión hacia el siglo XXI. El cambio climático en México. UNAM, México (2003).

    Google Scholar 

  16. FAO-IIASA. Global agroecological zones. Methodology and results of the global agro-ecological zones model. CD-ROM. Versión 1.0. http://www.fao.org (2000).

  17. I. P. Aydarov, Water, Salt and Nutrient Soil Regime Management in Arid Zones. Agropromizdat, Moscow, Russia (in Russian) (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iourii Nikolskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nikolskii, I. (2010). Modelling the Impact of Climate Change and Irrigation by the Geographic Law of Soil Zonality. In: Issar, A. (eds) Progressive Development. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10640-8_17

Download citation

Publish with us

Policies and ethics