Skip to main content

Stable Isotopes of Cr and Se as Tracers of Redox Processes in Earth Surface Environments

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Redox reactions play a central role in the environmental geochemistry of chromium (Cr) and selenium (Se). A small but growing body of research shows that the stable isotope abundances of both elements are altered by these redox reactions. As is observed with nitrate and sulfate, reduction of the higher valence oxoanions to lower valence forms induces isotopic fractionation, with the reaction product enriched in lighter isotopes. The magnitudes of isotope ratio shifts range up to 4.5‰ for 53Cr/52Cr during Cr(VI) reduction, and up to 18‰ for 82Se/76Se during Se(VI) or Se(IV) reduction, but they vary with reaction mechanism and can be much smaller for environmentally relevant conditions. Other chemical processes generally produce lesser fractionation. Accordingly, Cr and Se isotope ratios have potential as indicators of reduction. Application of Cr isotope data as a quantitative indicator of natural reduction of hexavalent Cr in groundwater appears to be successful. Application of Se isotope data to constrain selenate reduction in wetlands has not been successful because effective fractionations induced by redox reactions are small, but recent studies suggest that reduction in groundwater produces significant fractionation and may be detected using Se isotope measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe Y, Hunkeler D (2006) Does the Rayleigh equation apply to evaluate field isotope data in contaminant hydrogeology? Environ Sci Technol 40:1588–1596

    Google Scholar 

  • Albarède F, Beard BL (2004) Analytical methods for non-traditional isotopes. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes. Mineralogical Society of America, Washington

    Google Scholar 

  • Anbar AD, Roe JE, Holman ES, Barling J, Nealson KH (2000) Non-biological fractionation of iron isotopes. Science 288:126–128

    Google Scholar 

  • Asael D, Matthews A, Oszczepalski S, Bar-Matthews M, Halicz L (2009) Fluid speciation controls of low temperature copper isotope fractionation applied to the Kupferschiefer and Timna ore deposits. Chem Geol 262:147–158

    Google Scholar 

  • Bain DJ, Bullen TD (2005) Chromium isotope fractionation during oxidation of Cr(III) by manganese oxides. Geochim Cosmochim Acta 69(10) Suppl. 1:A212

    Google Scholar 

  • Ball JW, Bassett RL (2000) Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis. Chem Geol 168:123–134

    Google Scholar 

  • Ball JW, Nordstrom DK (1998) Critical evaluation and selection of standard state thermodynamic properties for chromium metal and its aqueous ions, hydrolysis species, oxides, and hydroxides. J Chem Eng Data 43:895–918

    Google Scholar 

  • Beard BL, Johnson CM (2004) Fe isotope variations in the modern and ancient earth and other planetary bodies. In: Johnson CM, Beard BL, Albarede F (eds) Geochemistry of non-traditional stable isotopes. Mineralogical Society of America, Washington

    Google Scholar 

  • Belshaw NS, Zhu XK, Guo Y, O’Nions RK (2000) High precision measurement of iron isotopes by plasma source mass spectrometry. Int J Mass Spectrom 197:191–195

    Google Scholar 

  • Bender ML (1990) The δ18O of dissolved o2 in seawater: a unique tracer of circulation and respiration in the deep sea. J Geophys Res 95:22243–22252

    Google Scholar 

  • Berna EC, Johnson TM, Makdisi RS, Basu A (2010) Cr stable isotopes as indicators of Cr(VI) reduction in groundwater: a detailed time-series study of a point-source plume. Environ Sci Technol 44:1043–1048

    Google Scholar 

  • Bigeleisen J (1949) The relative reaction velocities of isotopic molecules. J Chem Phys 17:675–678

    Google Scholar 

  • Blowes DW (2002) Tracking hexavalent Cr in groundwater. Science 295:2024–2025

    Google Scholar 

  • Blum JS, Bindi AB, Buzzelli J, Stolz J, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30

    Google Scholar 

  • Brandes JA, Devol AH (1997) Isotopic fractionation of oxygen and nitrogen in coastal marine sediments. Geochim Cosmochim Acta 61:1793–1801

    Google Scholar 

  • Canfield DE (2001) Biogeochemistry of sulfur isotopes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America, Washington

    Google Scholar 

  • Carignan J, Wen HJ (2007) Scaling NIST SRM 3149 for Se isotope analysis and isotopic variations of natural samples. Chem Geol 242:347–350

    Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen, and carbon isotope fractionation factors applicable to geologic systems. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America, Washington

    Google Scholar 

  • Cheam V, Agemian H (1980) Preservation and stability of inorganic selenium-compounds at ppb levels in water samples. Analyt Chim Acta 113:237–245

    Google Scholar 

  • Clark SK, Johnson TM (2008) Effective isotopic fractionation factors for solute removal by reactive sediments: a laboratory microcosm and slurry study. Environ Sci Technol 42:7850–7855

    Google Scholar 

  • Clark SK, Johnson TM (2010) Selenium stable isotope investigation into selenium biogeochemical cycling in a lacustrine environment: Sweitzer lake, Colorado. J Environ Qual 39:2200–2210

    Google Scholar 

  • Criss RE (1999) Principles of stable isotope distribution. Oxford University press, New York, 254 pp

    Google Scholar 

  • Cutter GA, Cutter LS (2001) Sources and cycling of selenium in the western and equatorial Atlantic Ocean. Deep-Sea Res Part II 48:2917–2931

    Google Scholar 

  • Davis A, Olsen RL (1995) The geochemistry of chromium migration and remediation in the subsurface. Ground Water 33:759–768

    Google Scholar 

  • Detmers J, Brüchert V, Habicht KS, Kuever J (2001) Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl Eviron Microbiol 67:888–894

    Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD (2002) Cr isotopes and the fate of hexavalent chromium in the environment. Science 295:2060–2062

    Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD, Herbel MJ (2003) Stable isotope fractionation of selenium by natural microbial consortia. Chem Geol 195:119–129

    Google Scholar 

  • Ellis AS, Johnson TM, Bullen TD (2004) Using chromium stable isotope ratios to quantify Cr(VI) reduction: lack of sorption effects. Environ Sci Technol 38:3604–3607

    Google Scholar 

  • U.S. Environmental Protection Agency (2009) National Primary Drinking Water Regulations. http://water.epa.gov/drink/contaminants/index.cfm Accessed 23 Nov 2010

  • Fendorf SE, Zasoski RJ, Burau RG (1993) Competing metal ion influences on chromium(III) oxidation by birnessite. Soil Sci Soc Am J 57:1508–1515

    Google Scholar 

  • Frei R, Gaucher C, Poulton SW, Canfield DE (2009) Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature 461:250–253

    Google Scholar 

  • Hagiwara Y (2000) Selenium isotope ratios in marine sediments and algae – a reconaissance study. M.S. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL

    Google Scholar 

  • Halicz L, Yang L, Teplyakov N, Burg A, Sturgeon R, Kolodny Y (2008) High precision determination of chromium isotope ratios in geological samples by MC-ICP-MS. J Analyt Atom Spectrom 23:1622–1627

    Google Scholar 

  • Hayes JM (2001) Fractionation of carbon and hydrogen isotopes in biosynthetic processes. In: Valley JW, Cole DR (eds) Stable isotope geochemistry. Mineralogical Society of America, Washington

    Google Scholar 

  • Heninger I, PotinGautier M, deGregori I, Pinochet H (1997) Storage of aqueous solutions of selenium for speciation at trace level. Fresenius J Analyt Chem 357:600–610

    Google Scholar 

  • Herbel MJ, Johnson TM, Oremland RS, Bullen TD (2000) Selenium stable isotope fractionation during bacterial dissimilatory reduction of selenium oxyanions. Geochim Cosmochim Acta 64:3701–3709

    Google Scholar 

  • Herbel MJ, Johnson TM, Tanji KK, Gao S, Bullen TD (2002) Selenium stable isotope ratios in agricultural drainage water systems of the western San Joaquin Valley, CA. J Environ Qual 31:1146–1156

    Google Scholar 

  • Izbicki JA, Ball JW, Bullen TD, Sutley SJ (2008) Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Appl Geochem 23:1325–1352

    Google Scholar 

  • Johnson TM (2004) A review of mass-dependent fractionation of selenium isotopes and implications for other heavy stable isotopes. Chem Geol 204:201–214

    Google Scholar 

  • Johnson CM, Beard BL (1999) Correction of instrumentally produced mass fractionation during isotopic analysis of Fe by thermal ionization mass spectrometry. Int J Mass Spectrom 193:87–99

    Google Scholar 

  • Johnson TM, Bullen TD (2003) Selenium isotope fractionation during reduction by Fe(II)-Fe(III) hydroxide-sulfate (green rust). Geochim Cosmochim Acta 67:413–419

    Google Scholar 

  • Johnson TM, Herbel MJ, Bullen TD, Zawislanski PT (1999) Selenium isotope ratios as indicators of selenium sources and oxyanion reduction. Geochim Cosmochim Acta 63:2775–2783

    Google Scholar 

  • Johnson TM, Bullen TD, Zawislanski PT (2000) Selenium stable isotope ratios as indicators of sources and cycling of selenium: Results from the northern reach of San Francisco Bay. Environ Sci Tech 34:2075–2079

    Google Scholar 

  • Kaplan IR, Rittenberg SC (1964) Microbial fractionation of sulfur isotopes. Gen Microbiol 43:195–212

    Google Scholar 

  • Kaplan IR, Emery KO, Rittenberg SC (1963) The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim Cosmochim Acta 27:297–331

    Google Scholar 

  • Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publishers, New York

    Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. In: Kendall C, McDonnell JJ (eds) Isotope tracers in catchment hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Kirk LB, Childers SE, Peyton B, McDermott T, Gerlach R, Johnson TM (2009) Geomicrobiological control of selenium solubility in subsurface phosphate overburden deposits. Geochim Cosmochim Acta 73(13) Suppl. 1:A661

    Google Scholar 

  • Kitchen JW, Johnson TM, Bullen TD (2004) Chromium Stable Isotope Fractionation During Abiotic Reduction of Hexavalent Chromium. Eos Trans AGU 85(47) Fall Meet. Suppl.:Abstract V51A-0519

    Google Scholar 

  • Krouse HR, Thode HC (1962) Thermodynamic properties and geochemistry of isotopic compounds of selenium. Can J Chem 40:367–375

    Google Scholar 

  • Lemly AD (1998) Pathology of selenium poisoning in fish. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker, New York

    Google Scholar 

  • McNeal JM, Balistrieri LS (1989) Geochemistry and occurrence of selenium; an overview. In: Jacobs LW (ed) Selenium in agriculture and the environment. SSSA Special Publication. Soil Science Society of America, Madison, WI

    Google Scholar 

  • Mitchell K, Mason PRD, Johnson TM, Lyons TW, Van Cappellen P (2010) Selenium isotope variation during oceanic anoxic events. Geochim Cosmichim Acta 74(12) Suppl. 1:A714

    Google Scholar 

  • Myneni SCB, Tokunaga TK, Brown GE Jr (1997) Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science 278:1106–1109

    Google Scholar 

  • Oze C, Bird DK, Fendorf S (2007) Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc Natl Acad Sci USA 104:6544–6549

    Google Scholar 

  • Presser TS (1994) The Kesterson effect. Environ Manage 18:437–454

    Google Scholar 

  • Raddatz AL, Johnson TM, McLing TL (2011) Cr stable isotopes in Snake River Plain aquifer groundwater: evidence for natural reduction of dissolved Cr(VI). Environ Sci Technol 45:502–507

    Google Scholar 

  • Rashid K, Krouse HR (1985) Selenium isotopic fractionation during SeO3 2- reduction to Se0 and H2Se. Can J Chem 63:3195–3199

    Google Scholar 

  • Rees CB, Thode HG (1966) Selenium isotope effects in the reduction of sodium selenite and of sodium selenate. Can J Chem 44:419–427

    Google Scholar 

  • Rouxel O, Ludden J, Carginan J, Marin L, Fouquet Y (2002) Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry. Geochim Cosmochim Acta 66:3191–3199

    Google Scholar 

  • Schauble E, Rossman GR, Taylor HP (2004) Theoretical estimates of equilibrium chromium-isotope fractionations. Chem Geol 205:99–114

    Google Scholar 

  • Schilling K, Johnson TM, Wilcke W (2011) Isotope fractionation of selenium during fungal biomethylation by Alternaria alternata. Environ Sci Technol 45:2670–2676

    Google Scholar 

  • Schoenberg R, Zink S, Staubwasser M, von Blanckenburg F (2008) The stable Cr isotope inventory of solid earth reservoirs determined by double spike MC-ICP-MS. Chem Geol 249:294–306

    Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 degrees C. Chem Geol 171:173–194

    Google Scholar 

  • Sikora ER, Johnson TM, Bullen TD (2008) Microbial mass-dependent fractionation of chromium isotopes. Geochim Cosmochim Acta 72:3631–3641

    Google Scholar 

  • Skorupa JP (1998) Selenium poisoning of fish and wildlife in nature: lessons from twelve real-world-examples. In: Frankenberger WT Jr, Engberg RA (eds) Environmental chemistry of selenium. Marcel Dekker, New York

    Google Scholar 

  • Stilling LL, Amacher MC (2010) Kinetics of selenium release in mine waste from the Meade Peak Phosphatic Shale, Phosphoria Formation, Wooley Valley, Idaho, USA. Chem Geol 269:113–123

    Google Scholar 

  • Stollenwerk KG, Grove DB (1985) Reduction of hexavalent chromium in water samples acidified for preservation. J Environ Qual 14:396–399

    Google Scholar 

  • Trust BA, Fry B (1992) Stable sulphur isotopes in plants: a review. Plant Cell Environ 15:1105–1110

    Google Scholar 

  • Tudge AP, Thode HG (1950) Thermodynamic properties of isotopic compounds of sulfur. Can J Res B28:567–578

    Google Scholar 

  • U.S. Department of Health (2000) Toxicological Profile for Chromium. U.S. Department of Health and Human Services, Atlanta

    Google Scholar 

  • Valley JW, Cole DR (eds) (2001) Stable isotope geochemistry. Mineralogical Society of America, Washington

    Google Scholar 

  • Van Stempvoort DR, Reardon EJ, Fritz P (1990) Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption. Geochim Cosmochim Acta 54:2817–2826

    Google Scholar 

  • Villalobos-Aragon A, Ellis AS, Johnson TM, Bullen TD, Glessner JJ (2008) Chromium stable isotope fractionation during transport: sorption and oxidation experiments. 2008 Geological Society of America Annual Meeting abstracts, p. 239

    Google Scholar 

  • Webster CL (1972) Selenium isotope analysis and geochemical applications. Ph.D Dissertation, Colorado State University, Fort Collins, CO

    Google Scholar 

  • Weiss DJ et al (2008) Application of nontraditional stable-isotope systems to the study of sources and fate of metals in the environment. Environ Sci Technol 42:655–664

    Google Scholar 

  • Wen HJ, Carignan J (2011) Selenium isotopes trace the source and redox processes in the black shale-hosted Se-rich deposits in China. Geochim Cosmochim Acta 75:1411–1427

    Google Scholar 

  • Weyer S, Schwieters JB (2003) High precision Fe isotope measurements with high mass resolution MC-ICPMS. Int J Mass Spectrom Ion Processes 226:355–368

    Google Scholar 

  • White AF, Benson SM, Yee AW, Wollenberg HA, Flexser S (1991) Groundwater contamination at the Kesterson reservoir, California.2. Geochemical parameters influencing selenium mobility. Water Resour Res 27:1085–1098

    Google Scholar 

  • Zhu J, Zuo W, Liang X, Li S, Zheng B (2004) Occurrence of native selenium in Yutangba and its environmental implications. Appl Geochem 19:461–467

    Google Scholar 

  • Zhu JM, Johnson TM, Clark SK (2008) Selenium isotope variations in weathering zones of Se-rich carbonaceous rocks at Yutangba, China. Geochim Cosmochim Acta 72(12) Suppl. 1:A1102

    Google Scholar 

  • Zink S, Schoenberg R, Staubwasser M (2010) Isotopic fractionation and reaction kinetics between Cr(III) and Cr(VI) in aqueous media. Geochim Cosmochim Acta 74:5729–5745

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas M. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johnson, T.M. (2012). Stable Isotopes of Cr and Se as Tracers of Redox Processes in Earth Surface Environments. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_9

Download citation

Publish with us

Policies and ethics