Skip to main content

Silicon Isotopes as Tracers of Terrestrial Processes

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Chemical weathering of silicate rocks consumes carbon dioxide during the breakdown of minerals and liberates ions and silicic acid. Weathering reactions can lead to the fractionation of stable silicon (Si) isotopes, which allows variations in Si isotopic ratios to be used to quantify the global Si cycle. Here, I detail the methods and applications of assessing variations in continental Si stable isotope compositions, and show how such studies can elucidate the processes that affect the terrestrial Si cycle. The global Si cycle and its stable isotope variations are strongly affected by biology, with Si uptake by phytoplankton in oceans and lakes, and biological uptake by terrestrial plants, especially modern crops, on land. This biological uptake and subsequent release often leads to a strong seasonal cycle overprinted onto the underlying weathering reactions. Nevertheless, it can be shown that weathering reactions lead to the fractionation of Si into a light Si reservoir stored in soils and sedimentary basins, and a heavy Si reservoir in rivers, lakes and the oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre A, Meunier J-D, Colin F, Koud J-M (1997) Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochim Cosmochim Acta 61(3):677–682

    Google Scholar 

  • Alleman LY, Cardinal D, Cocquyt C, Plisnier P-D, Descy J-P, Kimirei I, Sinyinza D, André L (2005) Silicon isotopic fractionation in Lake Tanganyika and its main tributaries. J Great Lakes Res 31(4):509–519

    Google Scholar 

  • Allenby RJ (1954) Determination of the isotopic ratios of silicon in rocks. Geochim Cosmochim Acta 5(1):40–48

    Google Scholar 

  • André L, Cardinal D, Alleman LY, Moorbath S (2006) Silicon isotopes in 3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth Planet Sci Lett 245(1–2):162–173

    Google Scholar 

  • Basile-Doelsch I (2006) Si stable isotopes in the Earth’s surface: a review. J Geochem Explor 88(1–3):252–256

    Google Scholar 

  • Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433(7024):399–402

    Google Scholar 

  • Bern CR, Brzezinski MA, Beucher C, Ziegler K, Chadwick OA (2010) Weathering, dust, and biocycling effects on soil silicon isotope ratios. Geochim Cosmochim Acta 74(3):876–889

    Google Scholar 

  • Boltz DF, Trudell LA, Potter GV (1978) Silicon. In: Boltz DF, Trudell LA (eds) Colorimetric determination of nonmetals. Wiley, New York, pp 421–462

    Google Scholar 

  • Brzezinski MA, Pride CJ, Franck VM, Sigman DM, Sarmiento JL, Matsumoto K, Gruber N, Rau GH, Coale KH (2002) A switch from Si(OH)4 to NO −3 depletion in the glacial Southern Ocean. Geophys Res Lett 29(12):1564. doi:1510.1029/2001GL014349

    Google Scholar 

  • Brzezinski MA, Jones JL, Beucher CP, Demarest MS, Berg HL (2006) Automated determination of silicon isotope natural abundance by the acid decomposition of cesium hexafluosilicate. Anal Chem 78(17):6109–6114

    Google Scholar 

  • Burton KW, Vigier N (2011) Lithium Isotopes as Tracers in Marine and Terrestrial Environments. In: Baskaran M (ed) Handbook of Environmental Isotope Geochemistry. Springer, Heidelberg

    Google Scholar 

  • Cardinal D, Alleman LY, de Jong J, Ziegler K, André L (2003) Isotopic composition of silicon measured by multicollector plasma source mass spectrometry in dry plasma mode. J Anal At Spectrom 18(3):213–218

    Google Scholar 

  • Cardinal D, Alleman LY, Dehairs F, Savoye N, Trull TW, André L (2005) Relevance of silicon isotopes to Si-nutrient utilization and Si-source assessment in Antarctic waters. Global Biogeochem Cycles 19:2007. doi:10.1029/2004GB002364

    Article  Google Scholar 

  • Cardinal D, Gaillardet J, Hughes HJ, Opfergelt S, André L (2010) Contrasting silicon isotope signatures in rivers from the Congo Basin and the specific behaviour of organic-rich waters. Geophys Res Lett 37(12):L12403

    Google Scholar 

  • Conley DJ (2002) Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochem Cycles 16(4):1121

    Google Scholar 

  • Coplen TB, Bohlke JK, De Bievre P, Ding T, Holden NE, Hopple JA, Krouse HR, Lamberty A, Peiser HS, Revesz K, Rieder SE, Rosman KJR, Roth E, Taylor PDP, Vocke RD, Xiao YK (2002) Isotope-abundance variations of selected elements – (IUPAC Technical Report). Pure Appl Chem 74(10):1987–2017

    Google Scholar 

  • Cornelis JT, Delvaux B, Georg RB, Lucas Y, Ranger J, Opfergelt S (2010a) Tracing the origin of dissolved silicon transferred from various soil-plant systems towards rivers: a review. Biogeosci Discuss 7(4):5873–5930

    Google Scholar 

  • Cornelis JT, Delvaux B, Cardinal D, André L, Ranger J, Opfergelt S (2010b) Tracing mechanisms controlling the release of dissolved silicon in forest soil solutions using Si isotopes and Ge/Si ratios. Geochim Cosmochim Acta 74(14):3913–3924

    Google Scholar 

  • De La Rocha CL (2002) Measurement of silicon stable isotope natural abundances via multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Geochem Geophys Geosyst 3(8):art. no.-1045

    Google Scholar 

  • De La Rocha CL, Bickle MJ (2005) Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Mar Geol 217(3–4):267–282

    Google Scholar 

  • De La Rocha CL, Brzezinski MA, DeNiro MJ (1996) Purification, recovery, and laser-driven fluorination of silicon from dissolved and particulate silica for the measurement of natural stable isotope abundances. Anal Chem 68(21):3746–3750

    Google Scholar 

  • De La Rocha CL, Brzezinski MA, DeNiro MJ (2000) A first look at the distribution of the stable isotopes of silicon in natural waters. Geochim Cosmochim Acta 64(14):2467–2477

    Google Scholar 

  • de Souza GF, Reynolds BC, Kiczka M, Bourdon B (2010) Evidence for mass-dependent isotopic fractionation of strontium in a glaciated granitic watershed. Geochim Cosmochim Acta 74(9):2596–2614

    Google Scholar 

  • Debievre P, Lenaers G, Murphy TJ, Peiser HS, Valkiers S (1995) The chemical preparation and characterization of specimens for absolute measurements of the molar-mass of an element, exemplified by silicon, for redeterminations of the Avogadro constant. Metrologia 32(2):103–110

    Google Scholar 

  • Delstanche S, Opfergelt S, Cardinal D, Elsass F, André L, Delvaux B (2009) Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide. Geochim Cosmochim Acta 73(4):923–934

    Google Scholar 

  • Demarest MS, Brzezinski MA, Beucher CP (2009) Fractionation of silicon isotopes during biogenic silica dissolution. Geochim Et Cosmochim Acta 73(19):5572–5583

    Google Scholar 

  • Derry LA, Kurtz AC, Ziegler K, Chadwick OA (2005) Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433(7027):728–731

    Google Scholar 

  • Dietzel M (2005) Impact of cyclic freezing on precipitation of silica in Me-SiO2-H2O systems and geochemical implications for cryosoils and -sediments. Chem Geol 216(1–2):79–88

    Google Scholar 

  • Ding T (2004) Analytical methods for silicon isotope determination. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, vol 1. Elsevier, Amsterdam, pp 523–537

    Google Scholar 

  • Ding T, Jiang S, Wan D, Li Y, Li J, Song H, Liu Z, Yao X (1996) Silicon Isotope Geochemistry. Geological Publishing House, Beijing, China, p 125

    Google Scholar 

  • Ding T, Wan D, Wang C, Zhang F (2004) Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochim Cosmochim Acta 68(2):205–216

    Google Scholar 

  • Ding TP, Ma GR, Shui MX, Wan DF, Li RH (2005) Silicon isotope study on rice plants from the Zhejiang province, China. Chem Geol 218(1–2):41–50

    Google Scholar 

  • Ding TP, Tian SH, Sun L, Wu LH, Zhou JX, Chen ZY (2008a) Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle. Geochim Cosmochim Acta 72(23):5600–5615

    Google Scholar 

  • Ding TP, Zhou JX, Wan DF, Chen ZY, Wang CY, Zhang F (2008b) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochim Cosmochim Acta 72(5):1381–1395

    Google Scholar 

  • Douthitt CB (1982) The geochemistry of the stable isotopes of silicon. Geochim Cosmochim Acta 46(8):1449–1458

    Google Scholar 

  • Engström E, Rodushkin I, Baxter DC, Ohlander B (2006) Chromatographic purification for the determination of dissolved silicon isotopic compositions in natural waters by high-resolution multicollector inductively coupled plasma mass spectrometry. Anal Chem 78(1):250–257

    Google Scholar 

  • Engström E, Rodushkin I, Ingri J, Baxter DC, Ecke F, Österlund H, Öhlander B (2010) Temporal isotopic variations of dissolved silicon in a pristine boreal river. Chem Geol 271(3–4):142–152

    Google Scholar 

  • Epstein E (2003) SILICON. Annu Rev Plant Physiol Plant Mol Biol 50(1):641–664

    Google Scholar 

  • Epstein S, Taylor HP Jr (1970) 18O/16O, 30Si/28Si, D/H, and 13C/12C studies of lunar rocks and minerals. Science 167(3918, The Moon Issue):533–535

    Google Scholar 

  • Farkas J, Bohm F, Wallmann K, Blenkinsop J, Eisenhauer A, van Geldern R, Munnecke A, Voigt S, Veizer J (2007) Calcium isotope record of Phanerozoic oceans: implications for chemical evolution of seawater and its causative mechanisms. Geochim Cosmochim Acta 71(21):5117–5134

    Google Scholar 

  • Farmer VC, Delbos E, Miller JD (2005) The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma 127(1–2):71–79

    Google Scholar 

  • Fitoussi C, Bourdon B, Kleine T, Oberli F, Reynolds BC (2009) Si isotope systematics of meteorites and terrestrial peridotites: implications for Mg/Si fractionation in the solar nebula and for Si in the Earth’s core. Earth Planet Sci Lett 287(1–2):77–85

    Google Scholar 

  • Georg RB, Reynolds BC, Frank M, Halliday AN (2006a) Mechanisms controlling the silicon isotopic compositions of river waters. Earth Planet Sci Lett 249(3–4):290–306

    Google Scholar 

  • Georg RB, Reynolds BC, Frank M, Halliday AN (2006b) New sample preparation techniques for determination of Si isotope composition using MC-ICPMS. Chem Geol 235(1–2):95–104

    Google Scholar 

  • Georg RB, Halliday AN, Schauble EA, Reynolds BC (2007a) Silicon in the Earth’s core. Nature 447(7148):1102–1106

    Google Scholar 

  • Georg RB, Reynolds BC, West AJ, Burton KW, Halliday AN (2007b) Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet Sci Lett 261(3–4):476–490

    Google Scholar 

  • Georg RB, Zhu C, Reynolds BC, Halliday AN (2009a) Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA. Geochim Cosmochim Acta 73(8):2229–2241

    Google Scholar 

  • Georg RB, West AJ, Basu AR, Halliday AN (2009b) Silicon fluxes and isotope composition of direct groundwater discharge into the Bay of Bengal and the effect on the global ocean silicon isotope budget. Earth Planet Sci Lett 283(1–4):67–74

    Google Scholar 

  • Hendry KR, Leng MJ, Robinson LF, Sloane HJ, Blusztjan J, Rickaby REM, Georg RB, Halliday AN (2010) Silicon isotopes in Antarctic sponges: an interlaboratory comparison. Antarctic Sci 23(1):34–42

    Google Scholar 

  • Hiemstra T, Barnett MO, van Riemsdijk WH (2007) Interaction of silicic acid with goethite. J Colloid Interface Sci 310(1):8–17

    Google Scholar 

  • Hulston JR, Thode HG (1965) Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects. J Geophys Res 70:3475–3584

    Google Scholar 

  • Icopini GA, Brantley SL, Heaney PJ (2005) Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength at 25 degrees C. Geochim Cosmochim Acta 69(2):293–303

    Google Scholar 

  • Iler RK (1979) The Chemistry of silica – solubility, polymerization, colloid and surface properties and biochemistry. Wiley, New York, p 1026

    Google Scholar 

  • Land M, Ingri J, Andersson PS, Öhlander B (2000) Ba/Sr, Ca/Sr and 87Sr/86Sr ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Appl Geochem 15(3):311–325

    Google Scholar 

  • Lucas Y (2001) The role of plants in controlling rates and products of weathering: importance of biological pumping. Annu Rev Earth Planet Sci 29:135–163

    Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50(1):11–18

    Google Scholar 

  • Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136(2):3284–3289

    Google Scholar 

  • Marschner H (1995) Beneficial mineral elements. In: Mineral nutrition of higher plants, 2nd edn. Academic, London, pp 405–435

    Google Scholar 

  • Méheut M, Lazzeri M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory. Geochim Cosmochim Acta 71(13):3170–3181

    Google Scholar 

  • Méheut M, Lazzeri M, Balan E, Mauri F (2009) Structural control over equilibrium silicon and oxygen isotopic fractionation: a first-principles density-functional theory study. Chem Geol 258(1–2):28–37

    Google Scholar 

  • Miller MF (2002) Isotopic fractionation and the quantification of O-17 anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66(11):1881–1889

    Google Scholar 

  • Mitani N, Ma JF (2005) Uptake system of silicon in different plant species. J Exp Bot 56(414):1255–1261

    Google Scholar 

  • Morey GW, Fournier RO, Rowe JJ (1962) The solubility of quartz in water in the temperature interval from 25° to 300° C. Geochim Cosmochim Acta 26(10):1029–1040, IN1011, 1041–1043

    Google Scholar 

  • Opfergelt S, Cardinal D, Henriet C, André L, Delvaux B (2006a) Silicon isotope fractionation between plant parts in banana: in situ vs. in vitro. J Geochem Explor 88(1–3):224–227

    Google Scholar 

  • Opfergelt S, Cardinal D, Henriet C, Draye X, André L, Delvaux B (2006b) Silicon isotopic fractionation by banana (Musa spp.) grown in a continuous nutrient flow device. Plant Soil V285(1):333–345

    Google Scholar 

  • Opfergelt S, Delvaux B, André L, Cardinal D (2008) Plant silicon isotopic signature might reflect soil weathering degree. Biogeochemistry 91(2):163–175

    Google Scholar 

  • Opfergelt S, de Bournonville G, Cardinal D, André L, Delstanche S, Delvaux B (2009) Impact of soil weathering degree on silicon isotopic fractionation during adsorption onto iron oxides in basaltic ash soils, Cameroon. Geochim Cosmochim Acta 73(24):7226–7240

    Google Scholar 

  • Opfergelt S, Cardinal D, André L, Delvigne C, Bremond L, Delvaux B (2010) Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochim Cosmochim Acta 74(1):225–240

    Google Scholar 

  • Pokrovsky OS, Schott J, Kudryavtzev DI, Dupre B (2005) Basalt weathering in Central Siberia under permafrost conditions. Geochim Cosmochim Acta 69(24):5659–5680

    Google Scholar 

  • Raven JA (1983) The transport and function of silicon in plants. Biol Rev 58(2):179–207

    Google Scholar 

  • Raven JA (2001) Chapter 3 Silicon transport at the cell and tissue level. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Studies in plant science, vol 8. Elsevier, Amsterdam, pp 41–55

    Google Scholar 

  • Raymo ME, Ruddiman WF (1992) Tectonic forcing of late Cenozoic climate. Nature 359(6391):117–122

    Google Scholar 

  • Reynolds BC (2009) Modeling the modern marine δ30Si distribution. Global Biogeochem Cycles 23:GB2015. doi:10.1029/2008GB003266

    Google Scholar 

  • Reynolds JH, Verhoogen J (1953) Natural variations in the isotopic constitution of silicon. Geochim Cosmochim Acta 3(5):224–234

    Google Scholar 

  • Reynolds BC, Pokrovsky OS, Schott J (2006a) Si isotopes for tracing basalt weathering in Central Siberia. Geochim Cosmochim Acta 70(18 suppl 1):A528

    Google Scholar 

  • Reynolds BC, Frank M, Halliday AN (2006b) Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth Planet Sci Lett 244(1–2):431–443

    Google Scholar 

  • Reynolds BC, Georg RB, Oberli F, Wiechert UH, Halliday AN (2006c) Re-assessment of silicon isotope reference materials using high-resolution multi-collector ICP-MS. J Anal At Spectrom 21(3):266–269

    Google Scholar 

  • Reynolds BC, Aggarwal J, Andre L, Baxter D, Beucher C, Brzezinski MA, Engstrom E, Georg RB, Land M, Leng MJ, Opfergelt S, Rodushkin I, Sloane HJ, van den Boorn S, Vroon PZ, Cardinal D (2007) An inter-laboratory comparison of Si isotope reference materials. J Anal At Spectrom 22(5):561–568

    Google Scholar 

  • Rudge J, Reynolds BC, Bourdon B (2009) The double spike toolbox. Chem Geol 265:420–431

    Google Scholar 

  • Sangster AG, Hodson MJ (2007) Silica in higher plants. In: Evered D, O^{\prime}Connor M (eds) Ciba Foundation Symposium 121 – silicon biochemistry. Wiley, Chichester, pp 90–111

    Google Scholar 

  • Savage PS, Georg RB, Armytage RMG, Williams HM, Halliday AN (2010) Silicon isotope homogeneity in the mantle. Earth Planet Sci Lett 295(1–2):139–146

    Google Scholar 

  • Sommer M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes – a review. J Plant Nutr Soil Sci 169(3):310–329

    Google Scholar 

  • Strickland JDH (1952) The preparation and properties of silicomolybdic acid III. The combination of silicate and molybdate. J Am Chem Soc 74(4):872–876

    Google Scholar 

  • Struyf E, Smis A, Van Damme S, Meire P, Conley D (2009) Global Biogeochem Silicon Cycle. SILICON 1(4):207–213. doi:10.1007/s12633-010-9035-x

    Google Scholar 

  • Sun L, Wu L, Ding T, Tian S (2008) Silicon isotope fractionation in rice plants, an experimental study on rice growth under hydroponic conditions. Plant Soil 304(1):291–300

    Google Scholar 

  • Taylor BE (2004) Fluorination methods in stable isotope analysis. In: de Groot PA (ed) Handbook of stable isotope analytical techniques, vol 1. Elsevier, Amsterdam, pp 400–472

    Google Scholar 

  • Tipper ET, Galy A, Bickle MJ (2008) Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: lithological or fractionation control? Geochim Cosmochim Acta 72(4):1057–1075

    Google Scholar 

  • van den Boorn SHJM, Vroon PZ, van Belle CC, van der Wagt B, Schwieters J, van Bergen MJ (2006) Determination of silicon isotope ratios in silicate materials by high-resolution MC-ICP-MS using a sodium hydroxide sample digestion method. J Anal At Spectrom 21:734–742

    Google Scholar 

  • van den Boorn SHJM, Vroon PZ, van Bergen MJ (2009) Sulfur-induced offsets in MC-ICP-MS silicon-isotope measurements. J Anal At Spectrom 24:1111–1114

    Google Scholar 

  • Varela DE, Pride CJ, Brzezinski MA (2004) Biological fractionation of silicon isotopes in Southern Ocean surface waters. Global Biogeochem Cycles 18:GB1047. doi:10.1029/2003GB002140

    Article  Google Scholar 

  • Viers J, Dupré B, Polvé M, Schott J, Dandurand J-L, Braun J-J (1997) Chemical weathering in the drainage basin of a tropical watershed (Nsimi-Zoetele site, Cameroon): comparison between organic-poor and organic-rich waters. Chem Geol 140(3–4):181–206

    Google Scholar 

  • Vigier N, Gislason SR, Burton KW, Millot R, Mokadem F (2009) The relationship between riverine lithium isotope composition and silicate weathering rates in Iceland. Earth Planet Sci Lett 287(3–4):434–441

    Google Scholar 

  • White AF, Blum AE, Schulz MS, Vivit DV, Stonestrom DA, Larsen M, Murphy SF, Eberl D (1998) Chemical weathering in a tropical watershed, Luquillo mountains, Puerto Rico: I. Long-term versus short-term weathering fluxes. Geochim Cosmochim Acta 62(2):209–226

    Google Scholar 

  • Wischmeyer A, DelaRocha CL, Maier-Reimer E, Wolf-Gladrow DA (2003) Control mechanisms for the oceanic distribution of silicon isotopes. Global Biogeochem Cycles 17(3):1083. doi:10.1029/202GB002022

    Google Scholar 

  • Young ED, Galy A, Nagahara H (2002) Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim Cosmochim Acta 66(6):1095–1104

    Google Scholar 

  • Ziegler K, Chadwick OA, White AF, Brzezinski MA (2005a) δ30Si systematics in a granitic saprolite, Puerto Rico. Geology 33(10):817–820

    Google Scholar 

  • Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005b) Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochim Cosmochim Acta 69(19):4597–4610

    Google Scholar 

Download references

Acknowledgments

I would like to thank Mark Baskaran and two anonymous reviewers for their great help in improving this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Reynolds .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reynolds, B. (2012). Silicon Isotopes as Tracers of Terrestrial Processes. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_6

Download citation

Publish with us

Policies and ethics