Skip to main content

Oxygen Isotope Dynamics of Atmospheric Nitrate and Its Precursor Molecules

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

The stable oxygen isotopic composition of atmospheric nitrate is a powerful proxy for assessing what oxidation pathways are important for converting nitrogen oxides into nitrate. Large 18O enrichments and excess 17O (i.e. mass independent composition) are observed in atmospheric nitrate collected across the globe. These isotope enrichments and their variability in space and time have been linked to the magnitude of ozone oxidation. Attempts to model the oxygen isotope enrichments using simplified isotope mass balance assumptions and photochemical models have yielded reasonably good agreement between observations and simulations. However, there is a lack of atmospheric nitrate isotope measurements across a range of different atmospheric environments. Isotopes of oxygen in atmospheric nitrate can be utilized to assess changes in atmospheric chemistry, applied as tracers in nitrate deposition studies, and used to assess the atmosphere’s chemical response to environmental change over time using ice core nitrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander B, Hastings MG, Allman DJ et al (2009) Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate. Atmos Chem Phys 9:5043–5056

    Google Scholar 

  • Amberger A, Schmidt HL (1987) Natural isotope content of nitrate as an indicator of its origin. Geochim Cosmochim Acta 51:2699–2705

    Google Scholar 

  • Araguas-Araguas L, Froehlich K, Rozanski K (2000) Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol Process 14:1341–1355

    Google Scholar 

  • Barkan E, Luz B (2003) High-precision measurements of 17O/16O and 18O/16O of O2 and O2/Ar ratio in air. Rapid Commun Mass Spectrom 17:2809–2814

    Google Scholar 

  • Barkan E, Luz B (2005) High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun Mass Spectrom 19:3737–3742

    Google Scholar 

  • Bhattacharya SK, Pandey A, Savarino J (2008) Determination of intramolecular isotope distribution of ozone by oxidation reaction with silver metal. J Geophys Res 113. doi:10.1029/2006JD008309

  • Bobbink R, Hicks K, Galloway J et al (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59

    Google Scholar 

  • Böhlke JK, Mroczkowski SJ, Coplen TB (2003) Oxygen isotopes in nitrate: new reference materials for 18O:17O:16O measurements and observations on nitrate-water equilibration. Rapid Commun Mass Spectrom 17:1835–1846

    Google Scholar 

  • Bowen GJ, Revenaugh J (2003) Interpolating the isotopic composition of modern meteoric precipitation. Water Resour Res 39. doi:10.1029/2003WR002086

  • Brown SS, Stark H, Ryerson TB et al (2003) Nitrogen oxides in the nocturnal boundary layer: simultaneous in situ measurements of NO3, N2O5, NO2, NO, and O3. J Geophys Res 108. doi:10.1029/2002JD002917

    Google Scholar 

  • Buda AR, DeWalle DR (2009) Using atmospheric chemistry and storm track information to explain the variation of nitrate stable isotopes in precipitation at a site in central Pennsylvania, USA. Atmos Environ 43:4453–4464

    Google Scholar 

  • Bunton CA, Halevi EA, Llewellyn DR (1952) Oxygen exchange between nitric acid and water. Part 1. J Chem Soc:4913–4916

    Google Scholar 

  • Burns DA, Kendall C (2002) Analysis of δ15N and δ18O to differentiate NO -3 sources at two watersheds in the Catskill Mountains of New York. Water Resour Res 38. doi:10.1029/2001WR000292

    Google Scholar 

  • Campbell DH, Kendall C, Chang CCY et al (2002) Pathways for nitrate release from an alpine watershed: determination using δ15N and δ18O. Water Resour Res 38. doi:10.1029/2001WR000294

    Google Scholar 

  • Casciotti KL, Sigman DM, Hastings MG et al (2002) Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal Chem 74:4905–4912

    Google Scholar 

  • Chang CCY, Langston J, Riggs M et al (1999) A method for nitrate collection for δ15N and δ18O analysis from waters with low nitrate concentrations. Can J Fish Aquat Sci 56:1856–1864

    Google Scholar 

  • Cliff SS, Thiemens MH (1994) High precision isotopic determination of the 18O/16O and 17O/16O ratio in nitrous oxide. Anal Chem 66:2791–2793

    Google Scholar 

  • Dieke GH, Crosswhite HM (2010) The ultraviolet bands of OH fundamental data. J Quant Spectrosc Radiat Transfer 111:1516–1542

    Google Scholar 

  • Dole M, Lane GA, Rudd DP et al (1954) Isotopic composition of atmospheric oxygen and nitrogen. Geochim Cosmochim Acta 6:65–78

    Google Scholar 

  • Dubey MK, Mohrschladt R, Donahue NM, Anderson JG (1997) Isotope-specific kinetics of hydroxyl radical (OH) with water (H2O): testing models of reactivity and atmospheric fractionation. J Phys Chem A 101:1494–1500

    Google Scholar 

  • Durka W, Schulze ED, Gebauer G et al (1994) Effects of forest decline on uptake and leaching of deposited nitrate determined from 15N and 18O measurements. Nature 372:765–767

    Google Scholar 

  • Elliott EM, Kendall C, Boyer EW et al (2009) Dual nitrate isotopes in dry deposition: utility for partitioning NOx source contributions to landscape nitrogen deposition. J Geophys Res 114. doi:10.1029/2008JG000889

  • Freyer HD (1991) Seasonal-variation of 15N/14N ratios in atmospheric nitrate species. Tellus Ser B 43:30–44

    Google Scholar 

  • Galloway JN (1995) Acid deposition: perspectives in time and space. Water Air Soil Pollut 85:15–24

    Google Scholar 

  • Galloway JN (1998) The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24

    Google Scholar 

  • Galloway JN, Dentener FJ, Capone DG et al (2004) Nitrogen cycles: past, present, and future. Biogeochemistry 70:153–226

    Google Scholar 

  • Gao YQ, Marcus RA (2001) Strange and unconventional isotope effects in ozone formation. Science 293:259–263

    Google Scholar 

  • Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24:225–262

    Google Scholar 

  • Gellene GI (1996) An explanation for symmetry-induced isotopic fractionation in ozone. Science 274:1344–1346

    Google Scholar 

  • Guenther J, Krankowsky D, Mauersberger K (2000) Third-body dependence of rate coefficients for ozone formation in 16O/18O mixtures. Chem Phys Lett 324:31–36

    Google Scholar 

  • Hales HC, Ross DS, Lini A (2007) Isotopic signature of nitrate in two contrasting watersheds of Brush Brook, Vermont, USA. Biogeochemistry 84:51–66

    Google Scholar 

  • Hallquist M, Stewart DJ, Baker J et al (2000) Hydrolysis of N2O5 on submicron sulfuric acid aerosols. J Phys Chem A 104:3984–3990

    Google Scholar 

  • Hastings MG, Sigman DM, Lipschultz F (2003) Isotopic evidence for source changes of nitrate in rain at Bermuda. J Geophys Res 108. doi:10.1029/2003JD003789

    Google Scholar 

  • Hathorn BC, Marcus RA (1999) An intramolecular theory of the mass-independent isotope effect for ozone. I. J Chem Phys 111:4087–4100

    Google Scholar 

  • Hathorn BC, Marcus RA (2000) An intramolecular theory of the mass-independent isotope effect for ozone II. Numerical implementation at low pressures using a loose transition state. J Chem Phys 113:9497–9509

    Google Scholar 

  • Heidenreich JE III, Thiemens MH (1983) A non-mass-dependent isotope effect in the production of ozone from molecular oxygen. J Chem Phys 78:892–895

    Google Scholar 

  • Herzberg G (1966) Infrared and Raman spectra of polyatomic molelcules, 2nd edn. Krieger, Malabar

    Google Scholar 

  • Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical-temperature. Geochim Cosmochim Acta 58:3425–3437

    Google Scholar 

  • Jaegle L, Jacob DJ, Brune WH et al (2000) Photochemistry of HOx in the upper troposphere at northern midlatitudes. J Geophys Res 105:3877–3892

    Google Scholar 

  • Johnston JC, Thiemens MH (1997) The isotopic composition of tropospheric ozone in three environments. J Geophys Res 102:25395–25404

    Google Scholar 

  • Kaiser J (2009) Reformulated 17O correction of mass spectrometric stable isotope measurements in carbon dioxide and a criticak appraisal of historic absolute carbon and oxygen isotope ratios. Geochim Cosmochim Acta 72:1312–1334

    Google Scholar 

  • Kaiser J, Hastings MG, Houlton BZ et al (2007) Triple oxygen isotope analysis of nitrate using the denitrifier method and thermal decomposition of N2O. Anal Chem 79:599–607

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Google Scholar 

  • Kendall C (1998) Tracing nitrogen sources and cycling in catchments. Elsevier Science B.V, Amsterdam, pp 519–576

    Google Scholar 

  • Komatsu DD, Ishimura T, Nakagawa F et al (2008) Determination of the 15N/14N, 17O/16O, and 18O/16O ratios of nitrous oxide by using continuous-flow isotope-ratio mass spectrometry. Rapid Commun Mass Spectrom 22:1587–1596

    Google Scholar 

  • Kornexl BE, Gehre M, Hofling R et al (1999) On-line δ18O measurement of organic and inorganic substances. Rapid Commun Mass Spectrom 13:1685–1693

    Google Scholar 

  • Krankowsky D, Bartecki F, Klees GG et al (1995) Measurement of heavy isotope enrichment in tropospheric ozone. Geophys Res Lett 22:1713–1716

    Google Scholar 

  • Krankowsky D, Lammerzahl P, Mauersberger K (2000) Isotopic measurements of stratospheric ozone. Geophys Res Lett 27:2593–2595

    Google Scholar 

  • Kunasek SA, Alexander B, Steig EJ et al (2008) Measurements and modeling of Δ17O of nitrate in snowpits from Summit, Greenland. J Geophys Res 113. doi:10.1029/2008JD010103

  • Liang MC, Irion FW, Weibel JD et al (2006) Isotopic composition of stratospheric ozone. J Geophys Res 111. doi:10.1029/2005JD006342

  • Luz B, Barkan E (2005) The isotopic ratios 17O/16O and 18O/16O in molecular oxygen and their significance in biogeochemistry. Geochim Cosmochim Acta 69:1099–1110

    Google Scholar 

  • Lyons JR (2001) Transfer of mass-independent fractionation in ozone to other oxygen-containing radicals in the atmosphere. Geophys Res Lett 28:3231–3234

    Google Scholar 

  • Majoube M (1971) Oxygen-18 and deuterium fractionation between water and steam. J Chim Phys Physicochim Biol 68:1423–1436

    Google Scholar 

  • Martin RV, Sauvage B, Folkins I et al (2007) Space-based constraints on the production of nitric oxide by lightning. J Geophys Res 112. doi:10.1029/2006JD007831

  • Mase D (2010) A coupled modeling and observational approach to understanding the 15N and 18O of atmospheric nitrate. M.S. Thesis, Purdue University

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1978) Mechanisms of hydrothermal crystallization of quartz at 250°C and 15 kbar. Geochim Cosmochim Acta 42:173–182

    Google Scholar 

  • Mauersberger K, Lammerzahl P, Krankowsky D (2001) Stratospheric ozone isotope enrichments-revisited. Geophys Res Lett 28:3155–3158

    Google Scholar 

  • Mauersberger K, Krankowsky D, Janssen C (2003) Oxygen isotope processes and transfer reactions. Space Sci Rev 106:265–279

    Google Scholar 

  • McCabe JR, Thiemens MH, Savarino J (2007) A record of ozone variability in South Pole Antarctic snow: role of nitrate oxygen isotopes. J Geophys Res 112. doi:10.1029/2006JD007822

  • McIlvin MR, Altabet MA (2005) Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater. Anal Chem 77:5589–5595

    Google Scholar 

  • Meijer HAJ, Li WJ (1998) The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isotopes Environ Health Stud 34:349–369

    Google Scholar 

  • Mentel TF, Sohn M, Wahner A (1999) Nitrate effect in the heterogeneous hydrolysis of dinitrogen pentoxide on aqueous aerosols. Phys Chem Chem Phys 1:5451–5457

    Google Scholar 

  • Michalski G (2009) Purification procedure for δ15N, δ18O, Δ17O analysis of nitrate. Int J Environ Anal Chem 90:586–590

    Google Scholar 

  • Michalski G, Bhattacharya SK (2009) The role of symmetry in the mass independent isotope effect in ozone. Proc Natl Acad Sci U S A 106:11496–11501

    Google Scholar 

  • Michalski G, Xu F (2010) Isotope modeling of nitric acid formation in the atmosphere using ISO-RACM: testing the importance of nitric oxide oxidation, heterogeneous reactions, and trace gas chemistry. Atmos Chem Phys (in review)

    Google Scholar 

  • Michalski G, Savarino J, Böhlke JK et al (2002) Determination of the total oxygen isotopic composition of nitrate and the calibration of a Δ17O nitrate reference material. Anal Chem 74:4989–4993

    Google Scholar 

  • Michalski G, Scott Z, Kabiling M et al (2003) First measurements and modeling of Δ17O in atmospheric nitrate. Geophys Res Lett 30:1870. doi:10.1029/2003GL017015

    Article  Google Scholar 

  • Michalski G, Bhattacharya SK, Girsch G (In preparation) Isotope effects occuring during the NOx cycle

    Google Scholar 

  • Miller MF (2002) Isotopic fractionation and the quantification of 17O anomalies in the oxygen three-isotope system: an appraisal and geochemical significance. Geochim Cosmochim Acta 66:1881–1889

    Google Scholar 

  • Morin S, Savarino J, Bekki S et al (2007) Signature of Arctic surface ozone depletion events in the isotope anomaly (Δ17O) of atmospheric nitrate. Atmos Chem Phys 7:1451–1469

    Google Scholar 

  • Morin S, Savarino J, Frey MM et al (2008) Tracing the origin and fate of NOx in the Arctic atmosphere using stable isotopes in nitrate. Science 322:730–732

    Google Scholar 

  • Morin S, Savarino J, Frey MM et al (2009) Comprehensive isotopic composition of atmospheric nitrate in the Atlantic Ocean boundary layer from 65°S to 79°N. J Geophys Res 114. doi:10.1029/2008JD010696

  • Morton J, Barnes J, Schueler B et al (1990) Laboratory studies of heavy ozone. J Geophys Res 95:901–907

    Google Scholar 

  • Mosier A, Kroeze C, Nevison C et al (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Google Scholar 

  • Patris N, Cliff SS, Quinn PK et al (2007) Isotopic analysis of aerosol sulfate and nitrate during ITCT-2k2: determination of different formation pathways as a function of particle size. J Geophys Res 112:D23301. doi:10.1029/2005JD006214

    Article  Google Scholar 

  • Peiro-Garcia J, Nebot-Gil I (2002) Ab initio study of the mechanism and thermochemistry of the atmospheric reaction NO+O3→NO2+O2. J Phys Chem A 106:10302–10310

    Google Scholar 

  • Revesz K, Böhlke JK (2002) Comparison of δ18O in nitrate by different combustion techniques. Anal Chem 74:5410–5413

    Google Scholar 

  • Revesz K, Böhlke JK, Yoshinari T (1997) Determination of δ18O and δ15N in nitrate. Anal Chem 69:4375–4380

    Google Scholar 

  • Rodhe H, Dentener F, Schulz M (2002) The global distribution of acidifying wet deposition. Environ Sci Technol 36:4382–4388

    Google Scholar 

  • Savarino J, Lee CCW, Thiemens MH (2000) Laboratory oxygen isotopic study of sulfur (IV) oxidation: origin of the mass-independent oxygen isotopic anomaly in atmospheric sulfates and sulfate mineral deposits on Earth. J Geophys Res 105:29079–29088

    Google Scholar 

  • Savarino J, Kaiser J, Morin S et al (2007) Nitrogen and oxygen isotopic constraints on the origin of atmospheric nitrate in coastal Antarctica. Atmos Chem Phys 7:1925–1945

    Google Scholar 

  • Savarino J, Bhattacharya SK, Morin S et al (2008) The NO+O3 reaction: a triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly. J Chem Phys 128. doi:10.1063/1.2917581

    Google Scholar 

  • Silva SR, Kendall C, Wilkison DH et al (2000) A new method for collection of nitrate from fresh water and the analysis of nitrogen and oxygen isotope ratios. J Hydrol 228:22–36

    Google Scholar 

  • Spoelstra J, Schiff SL, Elgood RJ et al (2001) Tracing the sources of exported nitrate in the Turkey Lakes Watershed using 15N/14N and 18O/16O isotopic ratios. Ecosystems 4:536–544

    Google Scholar 

  • Stockwell WR, Kirchner F, Kuhn M et al (1997) A new mechanism for regional atmospheric chemistry modeling. J Geophys Res 102:25847–25879

    Google Scholar 

  • Thiemens MH, Heidenreich JE III (1983) The mass-independent fractionation of oxygen: a novel isotope effect and its possible cosmochemical implications. Science 219:1073–1075

    Google Scholar 

  • Thiemens MH, Jackson T (1990) Pressure dependency for heavy isotope enhancement in ozone formation. Geophys Res Lett 17:717–719

    Google Scholar 

  • Thiemens MH, Jackson T, Mauersberger K, Schueler B, Morton J (1991) Oxygen isotope fractionation in stratospheric CO2. Geophys Res Lett 18:669–672

    Google Scholar 

  • Thiemens MH, Savarino J, Farquhar J et al (2001) Mass-independent isotopic compositions in terrestrial and extraterrestrial solids and their applications. Acc Chem Res 34:645–652

    Google Scholar 

  • Tuazon EC, Atkinson R, Plum CN et al (1983) The reaction of gas-phase N2O5 with water-vapor. Geophys Res Lett 10:953–956

    Google Scholar 

  • Uemura R, Barkan E, Abe O et al (2010) Triple isotope composition of oxygen in atmospheric water vapor. Geophys Res Lett 37. doi:10.1029/2009GL041960

  • Urey HC (1947) Thermodynamic properties of isotopic substances. J Chem Soc:562–581

    Google Scholar 

  • Valentini JJ (1987) Mass-independent isotopic fractionation in nonadiabatic molecular-collisions. J Chem Phys 86:6757–6765

    Google Scholar 

  • Vuille M, Werner M, Bradley RS et al (2005) Stable isotopes in precipitation in the Asian monsoon region. J Geophys Res 110:D23108. doi:10.1029/2005JD006022

    Article  Google Scholar 

  • Wahner A, Mentel TF, Sohn M (1998) Gas-phase reaction of N2O5 with water vapor: importance of heterogeneous hydrolysis of N2O5 and surface desorption of HNO3 in a large teflon chamber. Geophys Res Lett 25:2169–2172

    Google Scholar 

  • Wassenaar LI (1995) Evaluation of the origin and fate of nitrate in the Abbotsford Aquifer using the isotopes of 15N and 18O in NO -3 . Appl Geochem 10:391–405

    Google Scholar 

  • Wild O, Law KS, McKenna DS et al (1996) Photochemical trajectory modeling studies of the North Atlantic region during August 1993. J Geophys Res 101:29269–29288

    Google Scholar 

  • Williard KWJ, DeWalle DR, Edwards PJ, Sharpe WE (2001) 18O isotopic separation of stream nitrate sources in mid-Appalachian forested watersheds. J Hydrol 252:174–188

    Google Scholar 

  • Yung YL, DeMore WB, Pinto JP (1991) Isotopic exchange between carbon dioxide and ozone via O(1D) in the stratosphere. Geophys Res Lett 18:13–16

    Google Scholar 

  • Yvon SA, Plane JMC, Nien CF et al (1996) Interaction between nitrogen and sulfur cycles in the polluted marine boundary layer. J Geophys Res 101:1379–1386

    Google Scholar 

  • Zahn A, Franz P, Bechtel C, GrooÔ JU, Röckmann T (2006) Modelling the budget of middle atmospheric water vapour isotopes. Atmos Chem Phys 6:2073–2090

    Google Scholar 

  • Zhang Y, Seigneur C, Seinfeld JH et al (2000) A comparative review of inorganic aerosol thermodynamic equilibrium modules: similarities, differences, and their likely causes. Atmos Environ 34:117–137

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Michalski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Michalski, G., Bhattacharya, S.K., Mase, D.F. (2012). Oxygen Isotope Dynamics of Atmospheric Nitrate and Its Precursor Molecules. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_30

Download citation

Publish with us

Policies and ethics