Skip to main content

Applications of Cosmogenic Isotopes as Atmospheric Tracers

  • Chapter
  • First Online:
Handbook of Environmental Isotope Geochemistry

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Earth’s atmosphere is constantly bombarded by cosmic-ray particles and the interaction of these cosmic-ray particles with the target nuclei continuously produce a suite of radionuclides which serve as powerful tracers to identify and quantify several atmospheric processes. These include sources and transport and mixing of air masses, exchange of air-masses between various layers of the atmosphere (e.g., stratosphere–troposphere exchange, STE), residence times of atmospheric gases, removal rates and residence times of atmospheric pollutants to name a few. Combining the cosmogenic radionuclides with other naturally-occurring (primarily daughter products of 222Rn) and anthropogenic (mainly derived from nuclear weapons testing) radionuclides, have significantly aided to improve our understanding of the time scales involved with the interhemispheric exchange, meridional mixing and cross-Equator mixing as well as residence time of tropospheric aerosols. In this article, we review some of the key applications of cosmogenic radionuclides tracers in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baskaran M (2011) Po-210 and Pb-210 as atmospheric tracers and global atmospheric Pb-210 fallout: a review. J Environ Radioact. 102:500–513

    Article  Google Scholar 

  • Baskaran M, Coleman CH, Santschi PH (1993) Atmospheric depositional fluxes of 7Be and 210Pb at Galveston and College Station, Texas. J Geophys Res 98:20555–20571

    Google Scholar 

  • Benitez-Nelson CR, Buesseler KO (1998) Measurement of cosmogenic 32P and 33P activities in rainwater and seawater. Anal Chem 70:64–72

    Google Scholar 

  • Bennett CL, Beukens RP, Clover M, Grove HE et al (1977) Radiocarbon dating using electrostatic accelerators: negative ions provide the key. Science 198:508–510

    Google Scholar 

  • Bhandari N (1965) Studies of some physical processes occurring in the atmosphere based on radionuclides of natural and artificial origin, Ph.D. Thesis, University of Bombay, India, pp. 164

    Google Scholar 

  • Bhandari N, Rama T (1963) Atmospheric circulation from observations of 22Na and other short-lived natural radioactivities. J Geophys Res 68:1959–1966

    Google Scholar 

  • Bhandari N, Lal D, Rama T (1966) Stratospheric circulation studies based on natural and artificial radioactive trace elements. Tellus 18:391–406

    Google Scholar 

  • Brewer AW (1949) Evidence for a world circulation provided by the measurements of helium and water vapor distribution in the stratosphere. Q J Roy Meteorol Soc 75:351–363

    Google Scholar 

  • Broecker WS (2003) Radiocarbon. In: Turekian KK, Holland D, Turekian KK, Holland D (eds) Treatise on geochemistry, vol 4. Elsevier, Oxford, pp 245–260

    Google Scholar 

  • Brothers LA, Dominguez G, Abramian A, Corbin A et al (2010) Optimized low-level liquid scintillation spectroscopy of 35S for atmospheric and biogeochemical chemistry applications. Proc Natl Acad Sci USA 107(12):5311–5316

    Google Scholar 

  • Buseck PR, Schwartz SE (2003) Tropospheric aerosols. In: Turekian KK, Holland D (eds) Treatise in geochemistry, 4.04. Elsevier, Amsterdam, pp 91–109

    Google Scholar 

  • Danielsen EF (1968) Stratospheric-tropospheric exchange based on radioactivity, ozone, and potential vorticity. J Atmos Sci 25:502–518

    Google Scholar 

  • Danielsen EF, Mohnen VA (1977) Project Dustorm report: ozone transport, in situ measurements, and meteorological analyses of tropopause folding. J Geophys Res 82:5867–5877

    Google Scholar 

  • Danielsen EF, Hipskind RS, Gaines SE et al (1987) Three dimensional analysis of potential vorticity associated with tropopause folds and observed variations of ozone and carbon monoxide. J Geophys Res 92:2103–2111

    Google Scholar 

  • Dibb JE, Meeker LD, Finkel RC, Southon JR et al (1994) Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada. J Geophys Res 99:12855–12864

    Google Scholar 

  • Dibb JE, Talbot RW, Scheuer E, Seid G, DeBell L (2003) Stratospheric influence on the northern American free troposphere during TOPSE: 7Be as a stratospheric tracer. J Geophys Res 108:8363. doi:10.1029/2001JD001347

    Article  Google Scholar 

  • Elmore D, Gove HE, Ferraro R et al (1980) Determination of I-129 using tandem accelerator mass-spectrometry. Nature 286:138–140

    Google Scholar 

  • Elmore D, Phillips FM (1987) Mass spectrometry for measurement of long-lived radioisotopes. Science 236:543–550

    Google Scholar 

  • Galindo-Uribarri A, Beene JR, Danchev M et al (2007) Pushing the limits of accelerator mass spectrometry. Nucl Instru Meth Phys Res B 259B:123–130

    Google Scholar 

  • Graham I, Ditchburn R, Barry B (2003) Atmospheric deposition of 7Be and 10Be in New Zealand rain (1996–98). Geochim Cosmochim Acta 67(3):361–373

    Google Scholar 

  • Heikkilä U, Beer J, Alfimov V (2008) Beryllium-10 and beryllium-7 in precipitation in Dubendorf (440 m) and at Jungfraujoch (3580 m), Switzerland (1998–2005). J Geophys Res 113:D11104. doi:10.1029/2007JD0091960, 2008

    Article  Google Scholar 

  • Hirose K (2011) Uranium, thorium and anthropogenic radionuclides as atmospheric tracers. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg

    Google Scholar 

  • Hong G-H (2011) Applications of anthropogenic radionuclides as tracers to investigate marine environmental processes. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg

    Google Scholar 

  • Igarashi Y, Hirose K, Otsuji-Hatori M (1998) Beryllium-7 deposition and its relation to sulfate deposition. J Atmos Chem 29:217–231

    Google Scholar 

  • Jordan CE, Dibb JE, Finkel RC (2003) 10Be/7Be tracer of atmospheric transport and stratosphere-troposphere exchange. J Geophys Res 108:4234. doi:10.1029/ 2002JD002395

    Article  Google Scholar 

  • Junge CE (1963) Air chemistry and radioactivity. Academic, San Diego

    Google Scholar 

  • Kaste JM, Baskaran M (2011) Meteoric 7Be and 10Be as process tracers in the environment. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg

    Google Scholar 

  • Ketterer ME (2011) Applications of transuranics as tracers and chronometers in the environment. In: Baskaran M (ed) Handbook of environmental isotope geochemistry. Springer, Heidelberg

    Google Scholar 

  • Koch DM, Jacob DJ, Graustein WC (1996) Vertical transport of troposheric aerosols as indicated by 7Be and 210Pb in a chemical tracer model. J Geophys Res 101:18651–18666

    Google Scholar 

  • Kubik PW, Christl M (2010) Be-10 and Al-26 measurements at the Zurich 6 MV Tandem AMS facility. Nucl Instr Meth Phys Res B 268:880–883

    Google Scholar 

  • Lal D (1988) In-situ produced cosmogenic isotopes in terrestrial rocks. Ann Rev Earth Planet Sci Lett 16:355–388

    Google Scholar 

  • Lal D, Rama T (1966) Characteristics of global tropospheric mixing based on man-made C14, H3, and Sr90. J Geophys Res 71:2865–2874

    Google Scholar 

  • Lal D, Peters B (1967) Cosmic-ray produced radioactivities on the earth. In: Handbuch der Physik, vol 46. Springer, Berlin, p 551

    Google Scholar 

  • Lal D, Suess HE (1968) The radioactivity of the atmosphere and hydrosphere. Annu Rev Nucl Sci 18:407–434

    Google Scholar 

  • Lal D (2002) Cosmogenic radionuclides. In: Holton JR, Pyle J, Curry JA (eds) Encyclopedia of atmospheric sciences. Academic, London, pp 1891–1900

    Google Scholar 

  • Lal D (2007) Recycling of cosmogenic nuclides after their removal from the atmosphere; special case of appreciable transport of Be-10 to polar regions by Aeolian dust. Earth Planet Sci Lett 264:177–187

    Google Scholar 

  • Lamborg CH, Fitzgerald WF, Graustein WC, Turekian KK (2000) An examination of the atmospheric chemistry of mercury using 210Pb and 7Be. J Atmos Chem 36:325–338

    Google Scholar 

  • Lewis R, Frohlich K, Hebert D (1986) Measurements of specific tritium activities of precipitation and air humidity samples – methods and application. Isotopenpraxis 22:269–272

    Google Scholar 

  • Libby WF (1946) Atmospheric helium-three and radiocarbon from cosmic radiation. Phys Rev 69:671–672

    Google Scholar 

  • Masarik J, Beer J (1999) Simulation of particle fluxes and cosmognic nuclide production in the Earth’s atmosphere. J Geophys Res 104(D14):12009–12111

    Google Scholar 

  • McNeary D, Baskaran M (2003) Depositonal characteristics of 7Be and 210Pb in southeastern Michigan. J Geophys Res 108:4210. doi:10.1029/2002JD003021

    Article  Google Scholar 

  • Monaghan M, Krishnaswami S, Turekian KK (1986) The global-average production of 10Be. Earth Planet Sci Lett 76:279–287

    Google Scholar 

  • Nazaroff WW (1992) Radon transport from soil to air. Rev Geophys 30:137–160

    Google Scholar 

  • Nelson DE, Korteling RG, Stott WR (1977) Carbon-14: direct detection at natural accelerations. Science 198:507–508

    Google Scholar 

  • Nijampurkar VN, Somayajulu BLK (1974) An improved method of Silicon-32 measurement of groundwater. Proc Ind Acad Sci 80:289–298.

    Google Scholar 

  • Nishihizumi K, Finkel RC, Klein J, Middleton R (1996) Cosmogenic production of 7Be and 10Be in water targets. J Geophys Res 101(B10):22,225–22,232

    Google Scholar 

  • Perkins RW, Thomas CW, Hill MW, Nielsen JM (1965) Chlorine-38 and sulphur-38 produced by cosmic radiation. Nature 205:790–791

    Google Scholar 

  • Perkins RW, Thomas CW, Young JA (1970) Application of short-lived cosmogenic radionuclides as tracers of in-cloud scavenging processes. J Geophys Res 75:3076–3087

    Google Scholar 

  • Raisbeck GM, Yiou F, Fruneau M, Loiseaux JM, Lieuvin M, Ravel JC (1981) Cosmogenic 10Be/7Be as a probe of atmospheric transport processes. Geophys Res Lett 8(9):1015–1018

    Google Scholar 

  • Reedy RC, Arnold JR, Lal D (1983) Cosmic ray record in solar system matter. Annu Rev Nucl Part Sci 35:505–537

    Google Scholar 

  • Raisbeck GM, Yiou F, Fruneau F, Loiseaux JM (1978) Be-10 mass spectrometry with a cyclotron. Science 202:215–217

    Google Scholar 

  • Raisbeck GM, Yiou F (1988) Measurement of Be-7 by accelerator mass-spectrometry. Earth Planet Sci Lett 89:103–108

    Google Scholar 

  • Reiter R (1975) Stratospheric-tropospheric exchange processes. Rev Geophys Space Phys 13:459

    Google Scholar 

  • Rodel W (1963) Sodium-24 produced by cosmic radiation. Nature 200:999–1000

    Google Scholar 

  • Samuelsson C, Hallstadius L, Persson B, Hedvall R, Holm E (1986) 222Rn and 210Pb in the Arctic summer air. J Environ Radioact 3:35–54

    Google Scholar 

  • Solomon S et al (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge), p 996

    Google Scholar 

  • Suter M, Balzer R, Bonani G et al (1984) Precision-measurements of C-14 in AMS – some results and prospects. Nucl Instru Meth Phys Res B 5:117–122

    Google Scholar 

  • Tanaka N, Turekian KK (1991) Use of cosmogenic 35S to determine the rates of removal of atmospheric SO2. Nature 352:226–228

    Google Scholar 

  • Tanaka N, Turekian KK (1995) Determination of the dry depositional flux of SO2 using cosmogenic 35S and 7Be measurements. J Geophys Res 100:2841–2848

    Google Scholar 

  • Tanaka N, Rye DM, Xiao Y, Lasaga AC (1994) Use of stable sulfur isotope systematic for evaluating oxidation reaction pathways and in-cloud-scavenging of sulfur dioxide in the atmosphere. Geophys Res Lett 21(4):1519–1522

    Google Scholar 

  • Turekian KK, Tanaka N (1992) The use of atmospheric cosmogenic 35S and 7Be in determining depositional fluxes of SO2. Geophys Res Lett 19(17):1767–1770

    Google Scholar 

  • Turekian KK, Graustein WC, Cochran JK (1989) Lead-210 in the SEAREX Program: an aerosol tracer across the Pacific. In: Riley JP, Chester R, Duce RA (eds) Chemical oceanography, vol 10. Academic, London, pp 51–81

    Google Scholar 

  • Turekian KK, Graustein WC (2003) Natural radionuclides in the atmosphere. In: Treatise in geochemistry, 4. Elsevier, Amsterdam, pp 261–279

    Google Scholar 

  • Winsberg L (1956) The production of chlorine-39 in the lower atmosphere by cosmic radiation. Geochim Cosmochim Acta 9:183

    Google Scholar 

  • Wogman NA, Thomas CW, Cooper JA, Engelmann RJ, Perkins RW (1968) Cosmic-ray produced radionuclides as tracers of atmospheric precipitation processes. Science 159:189–192

    Google Scholar 

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232

    Google Scholar 

Download references

Acknowledgements

We thank two reviewers (Karl Turekian and an anonymous) for several useful suggestions to extend the scope of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lal, D., Baskaran, M. (2012). Applications of Cosmogenic Isotopes as Atmospheric Tracers. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_28

Download citation

Publish with us

Policies and ethics