Skip to main content

Applications of Anthropogenic Radionuclides as Tracers to Investigate Marine Environmental Processes

  • Chapter
  • First Online:

Part of the book series: Advances in Isotope Geochemistry ((ADISOTOPE))

Abstract

Since the 1940, anthropogenic radionuclides have been intentionally and accidentally introduced into the environment through a number of activities including nuclear weapons development, production, and testing, and nuclear power generation. In the ensuing decades, a significant body of research has been conducted that not only addresses the fate and transport of the anthropogenic radionuclides in the marine environment but allows their application as tracers to better understand a variety of marine and oceanic processes. In many cases, the radionuclides are derived entirely from anthropogenic sources and the release histories are well constrained. These attributes, in conjunction with a range of different geochemical characteristics (e.g., half-life, particle affinity, etc.), make the anthropogenic radionuclides extremely useful tools. A number of long-lived and largely soluble radionuclides (e.g., 3H, 14C, 85Kr, 90Sr, 99Tc, 125Sb, 129I, 134Cs, 137Cs) have been utilized for tracking movement of water parcels in horizontal and vertical directions in the sea, whereas more particle-reactive radionuclides (e.g., 54Mn, 55Fe, 103Ru, 106Ru, Pu isotopes) have been utilized for tracking the movement of particulate matter in the marine environment. In some cases, pairs of parent-daughter nuclides (e.g., 3H-3He, 90Sr-90Y and 241Pu-241Am) have been used to provide temporal constraints on processes such as the dynamics of particles in the water column and sediment deposition at the seafloor. Often information gained from anthropogenic radionuclides provides unique/complementary information to that gained from naturally occurring radionuclides or stable constituents, and leads to improved insight into natural marine processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aarkrog A (1988) Worldwide data on fluxes of 239,240Pu and 238Pu to the ocean. In Inventories of selected radionuclides in the oceans. IAEA-TECDOC-481, 103–137

    Google Scholar 

  • Aarkrog A (2003) Input of anthropogenic radionuclides into the world ocean. Deep-Sea Res II 50:2597–2602

    Google Scholar 

  • Aoyama M, Hirose K, Sugimura Y (1991) The temporal variation of stratospheric fallout derived from the Chernobyl accident. J Environ Radioact 13:103–115

    Google Scholar 

  • Assinder DJ (1999) A review of the occurrence and behavior of neptunium in the Irish Sea. J Environ Radioact 44:353–347

    Google Scholar 

  • Baskaran M (2005) Interaction of sea ice sediment and surface sea water in the Arctic Ocean: evidence from excess 210Pb. Geophys Res Lett: 32:L12601. doi:10.1029/2004GL022191

    Article  Google Scholar 

  • Baskaran M, Asbill S, Santschi PH, Davis T, Brooks JM, Champ MA, Makeyev V, Khlebovich V (1995) Distribution of 239,240Pu and 238Pu concentrations in sediments from the Ob and Yenisey rivers and the Kara Sea. Appl Radiat Isot 46:1109–1119

    Google Scholar 

  • Baskaran M, Asbill S, Schwantes J, Santschi PH, Champ MA, Brooks JM, Adkins D, Makeyev V (2000) Concentrations of 137Cs, 239,240Pu, and 210Pb in sediment samples from the Pechora Sea and biological samples from the Ob, Yenisey Rivers and Kara Sea. Mar Pollut Bull 40:830–838

    Google Scholar 

  • Baskaran M, Hong GH, Santschi PH (2009) Radionuclide analyses in seawater. In: Wurl O (ed) Practical guidelines for the analysis of seawater. CRC, Boca Raton, pp 259–304

    Google Scholar 

  • Baskaran M, Santschi PH (2002) Particulate and dissolved 210Pb activities in the shelf and slope regions of the Gulf of Mexico waters. Cont Shelf Res 22:1493–1510

    Google Scholar 

  • Baudin JP, Adam C, Garnier-Laplace J (2000) Dietary uptake, retention and tissue distribution of 54Mn, 60Co and 137Cs in the rainbow trout (Onchoryhynchus Mikiss Walabaum). Water Resour 34:2869–2878

    Google Scholar 

  • Beasley TM, Cooper LW, Grebmeier JM, Aagard K, Kelley JM, Kilius LR (1988) 237Np/129I atom ratios in the Arctic Ocean: has 237Np from western European and Russian fuel reprocessing facilities entered the Arctic Ocean? J Environ Radioact 39:255–277

    Google Scholar 

  • Beaupre SR, Druffel ERM (2009) Constraining the propagation of bomb-radiocarbon through the dissolved organic carbon (DOC) pool in the northeast Pacific Ocean. Deep-Sea Res I 56:1717–1726

    Google Scholar 

  • Bernstein RE, Byrne RH (2004) Acantharians and marine barite. Mar Chem 86:45–50

    Google Scholar 

  • Betram C (2010) Ocean iron fertilization in the context of the Kyoto protocol and the post-Kyoto process. Energy Policy 38:1130–1139

    Google Scholar 

  • Bienvenu P, Cassette P, Andreoletti G, Be M-M, Comte J, Lepy M-C (2007) A new determination of 79Se half-life. Appl Radiat Isot 65:355–364

    Google Scholar 

  • Bowen VT, Noshkin VE, Livingston HD, Volchock HL (1980) Fallout radionuclides in the Pacific Ocean: vertical and horizontal distributions, largely from GEOSECS stations. Earth and Planet Sc Lett 49:411–434

    Google Scholar 

  • Brewer PG, Spencer DW, Robertson DE (1972) Trace element profiles from the GEOSECS-II test station in the Sargasso Sea. Earth Planet Sci Lett 16:111–116

    Google Scholar 

  • Broecker WS (1974) Chemical oceanography. Harcourt Brace Jovanovich, New York, 214p

    Google Scholar 

  • Broecker WS (2003) Radiocarbon. In: Holland HD, Turekian KK (eds) Treatise in geochemistry, the atmosphere, vol. 4. Elsevier-Pergamon, Oxford, pp 245–260

    Google Scholar 

  • Broecker WS, Peng TH (1982) Tracers in the sea. Eldigio, New York, p 690

    Google Scholar 

  • Broecker WS, Southerland S, Smethie W, Peng TH, Ostlund G (1995) Oceanic radiocarbon: separation of the natural and bomb components. Global Biogeochem Cycles 9:263–288

    Google Scholar 

  • Browne E, Firestone RB (1986) Table of radioactive isotopes. Wiley-Interscience, New York

    Google Scholar 

  • Bruland KW (1983) Trace elements in seawater. In: Riley JP, Chester R (eds) Chemical oceanography, vol 8. Academic, London, pp 157–221

    Google Scholar 

  • Buesseler KO (1997) The isotopic signature of allout plutonium in the North Pacific. J Environ Radioact 36:69–83

    Google Scholar 

  • Buesseler KO, Livingston HD (1996) Natural and man-made radionuclides in the Black Sea. In: Guéguéniat P, Germain P, Métivier H (eds) Radionuclides in the oceans: Inputs and Inventories, Les Editions de physique, Europe Media Duplication S.A. Les Ulis, pp 199–217

    Google Scholar 

  • Buesseler KO, Livingston HD, Honjo S, Hay BJ, Konuk T, Kempe S (1990) Scavenging and particle deposition in the southwestern Black Sea – evidence from Chernobyl radiotracers. Deep-Sea Res 37:413–430

    Google Scholar 

  • Buesseler KO, Sholkovitz ER (1987) The geochemistry of fallout plutonium in the North Atlantic: II. 240Pu/239Pu ratios and their significance. Geochim Cosmochim Acta 51:2623–2637

    Google Scholar 

  • Byrne RH (2002) Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. Geochem Trans 3:11–16

    Google Scholar 

  • Carlson L, Holm E (1992) Radioactivity in Fucus vesiculosus L. from the Baltic Sea following the Chernobyl accident. J Environ Radioact 15:231–248

    Google Scholar 

  • Chiappini R, Pointurier R, Milies-Lacroix JC, Lepetit G, Hemet P (1999) 240Pu/239Pu isotopic ratios and 239+240Pu total measurements in surface and deep waters around Muroroa and Fangataufa atolls compared with Rangiroa atoll (French Polynesia). Sci Total Environ 237(238):269–276

    Google Scholar 

  • Cochran JK (1985) Particle mixing rates in sediments of the eastern equatorial Pacific: evidence from 210Pb, 239,240Pu and 137Cs distributions at MANOP sites. Geochim Cosmochim Acta 49:1195–1210

    Google Scholar 

  • Cooper LW, Larsen IL, Beasley TM, Dolvin SS, Grebmeier JM, Kelley JM, Scott M, Johnson-Pyrtle A (1998) The distribution of radiocesium and plutonium in sea ice-entrained Arctic sediments in relation to potential sources and sinks. J Environ Radioact 39:279–303

    Google Scholar 

  • Cooper LW, Beasley T, Aagaard K, Kelley JM, Larsen IL, Grebmeier JM (1999) Distributions of nuclear fuel-reprocessing tracers in the Arctic Ocean: indications of Russian river influence. J Mar Res 57:715–738

    Google Scholar 

  • Cundy AB, Croudace IW, Warwick PE, Oh JS, Haslett SK (2002) Accumulation of COGEMA-La Hague-derived reprocessing wastes in French salt marsh sediments. Environ Sci Technol 36:4990–4997

    Google Scholar 

  • Cutshall NH, Larsen IL, Olsen CR, Nittrouer CA, DeMaster DJ (1986) Columbia River sediment in Quinault Canyon, Washington – Evidence from artificial radionuclides. Mar Geol 71:125–136

    Google Scholar 

  • Delfanti R, Klein B, Papucci C (2003) Distribution of 137Cs and other radioactive tracers in the eastern Mediterranean: relationship to the deepwater transient. J Geophys Res 108(C9):8108. doi:10.1029/2002JC001371

    Article  Google Scholar 

  • Donoghue JF, Bricker OP, Oslen CR (1989) Particle-borne radionuclides as tracers for sediment in the Susquehanna River and Chesapeake Bay. Estuarine Coastal Shelf Sci 29:341–360

    Google Scholar 

  • du Bois PB, Dumas F (2005) Fast hydrodynamic model for medium-and long-term dispersion in seawater in the English Channel and southern North Sea, qualitative and quantitative validation by radionuclide tracers. Ocean Modell 9:169–210

    Google Scholar 

  • du Bois PB, Salomon JC, Gandon R, Guegueniat P (1995) A quantitative estimate of English Channel water fluxes into the North Sea from 1987 to 1992 based on radiotracer distribution. J Mar Syst 6:457–481

    Google Scholar 

  • Emsley J (1989) The elements. Clarendon, Oxford, p 256

    Google Scholar 

  • Franić Z (2005) Estimation of the Adriatic Sea water turnover time using fallout 90Sr as a radioactive tracer. J Mar Syst 57:1–12

    Google Scholar 

  • Gaetani GA, Cohen AL (2006) Element partitioning during precipitation of aragonite from seawater: a framework for understanding paleoproxies. Geochim Cosmochim Acta 70:4617–4634

    Google Scholar 

  • Gao Y, Drange H, Johannessen OM, Pettersson LH (2009) Sources and pathways of 90Sr in the North-Arctic region: present day and global warming. J Environ Radioact 100:375–395

    Google Scholar 

  • Gray J, Jones SR, Smith AD (1995) Discharges to the environment from the Sellafield site, 1951–1992. J Radiol Prot 15:99–131

    Google Scholar 

  • Hamilton TF, Milliès-Lacroix J-C, Hong GH (1996) 137Cs(90Sr) and Pu isotopes in the Pacific Ocean: sources and trends. In: Guéguéniat P, Germain P, Métivier H (eds) Radionuclides in the oceans. Inputs and Inventories. Les Editions de Physique, Les Ulis, pp 29–58

    Google Scholar 

  • Hamilton TF (2004) Linking legacies of the cold war to arrival of anthropogenic radionuclides in the oceans through the 20th century. In: Livingston HD (ed) Marine radioactivity. Elsevier, Amsterdam, pp 23–78

    Google Scholar 

  • Hirose K, Aoyama M, Povinec PP (2009) 239,240Pu/137Cs ratios in the water column of the North Pacific: a proxy of biogeochemical process. J Environ Radioact 100:258–262

    Google Scholar 

  • Hirose K, Igarashi Y, Aoyama M, Miyao T (2001) Long-term trends of plutonium fallout observed in Japan. In: Kudo A (ed) Plutonium in the environment. Elsevier Science, Amsterdam, pp 251–266

    Google Scholar 

  • Holm E, Persson BRR, Hallstadius L, Aarkrog A, Dahlgaard H (1983) Radiocesium and transuranium elements in the Greenland and Barents Seas. Oceanolog Acta 6:457–462

    Google Scholar 

  • Hong GH, Baskaran M, Povinec PP (2004) Artificial radionuclides in the western North Pacific: a review. In: Shiyomi M, Kawahata H, Koizumi H, Tsuda A, Awaya Y (eds) Global environmental change in the ocean and on land. Terrapub, Tokyo, pp 147–172

    Google Scholar 

  • Hou X, Roos P (2008) Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. Anal Chim Acta 608:105–139

    Google Scholar 

  • Hua Q (2009) Radiocarbon: a chronological tool for the recent past. Quat Geochronol 4:378–390

    Google Scholar 

  • Hu QH, Weng JQ, Wang JS (2010) Sources of anthropogenic radionuclides in the environment: a review. J Environ Radioact 101:426–437

    Google Scholar 

  • IAEA (2004) Sediment distribution coefficients and concentration factors for biota in the marine environment. Technical reports series No. 422, International Atomic Energy Agency, Vienna, p 93

    Google Scholar 

  • IAEA (2005) Worldwide marine radioactivity studies (WOMARS). Radionuclide levels in oceans and seas. IAEA-TECDOC-1429. International Atomic Energy Agency, Vienna, p 187

    Google Scholar 

  • Irlweck K, Hrnecek E (1999) 241Am concentration and 241Pu/239(240)Pu ratios in soils contaminated by weapons-grade plutonium. Akamemiai Kiado, Budapest, pp 595–599

    Google Scholar 

  • Jenkins WJ (2001) Tritium-helium dating. Encyclopedia of Ocean Sciences 6:3048–3056

    Google Scholar 

  • Kamenos NA, Cusack M, Moore PG (2008) Coralline algae are global paleothermometers with bi-weekly resolution. Geochim Cosmochim Acta 72:771–779

    Google Scholar 

  • Kafalas P, Irvine J Jr (1956) Nuclear excitation functions and thick target yields: (Cr+d). Phys Rev 104:703–705

    Google Scholar 

  • Kautsky H (1988) Determination of distribution processes, transport routes and transport times in the North Sea and the northern Atlantic using artificial radionuclides as tracers. In: Guary JC, Guegueniat P, Pentreath RJ (eds) Radionucludes: a tool for oceanography. Elsevier Applied Science, London, pp 271–280

    Google Scholar 

  • Kelley JM, Bond LA, Beasley TM (1999) Global distribution of Pu isotopes and 237Np. The Sci Total Environ 237(238):483–500

    Google Scholar 

  • Keeney-Kennicutt WL, Morse JW (1984) The interaction of Np(V)O +2 with common mineral surfaces in dilute aqueous solutions and seawater. Mar Chem 15:133–150

    Google Scholar 

  • Kemp RS (2008) A performance estimate for the detection of undecleared nuclear-fuel reprocessing by atmospheric 85Kr. J Environ Radioact 99:1341–1348

    Google Scholar 

  • Kenna TC, Sayles FL (2002) The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of plutonium and neptunium. J Environ Radioact 60:105–137

    Google Scholar 

  • Kershaw P, Baxter A (1995) The transfer of reprocessing wastes from north-west Europe to the Arctic. Deep-Sea Res II 42:1413–1448

    Google Scholar 

  • Ketterer ME, Szechenyi SC (2008) Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: a historical perspective and new frontiers in the environmental sciences. Spectrochim Acta Part B 63:719–737

    Google Scholar 

  • Kim CK, Kim CS, Chang BU, Choi SW, Chung CS, Hong GH, Hirose K, Igarashi Y (2004) Plutonium isotopes in seas around the Korean Peninsula. Sci Total Environ 318:197–209

    Google Scholar 

  • Kirchner G, Noack CC (1988) Core history and nuclide inventory of the Chernobyl core at the time of accident. Nucl Saf 29:1–5

    Google Scholar 

  • Koide M, Berine KK, Chow TJ, Goldberg ED (1985) The 240Pu/239Pu ratio, a potential geochronometer. Earth Planet Sci Lett 72:1–8

    Google Scholar 

  • Koide M, Goldberg ED, Herron MM, Langway CC Jr (1977) Transuranic depositional history in South Greenland firn layers. Nat 269:137–139

    Google Scholar 

  • Koide M, Griffin JJ, Goldberg ED (1975) Records of plutonium fallout in marine and terrestrial samples. J Geophys Res 80(30):4153–4162

    Google Scholar 

  • Krey PW, Hardy EP, Pachucki C, Rourke F, Coluzza J, Benson WK (1976) Mass isotopic composition of global fall-out plutonium in soil: Transuranium nuclides in the environment, San Francisco, CA, USA, pp. 671–678

    Google Scholar 

  • Kutschera W (2010) AMS and climate change. Nucl Instrum Methods Phys Res B 268:693–700

    Google Scholar 

  • Kuwabara J, Yamamoto M, Assinder DJ, Komura K, Ueno K (1996) Sediment profiles of 237Np in the Irish Sea: estimation of the total amount of 237Np from Sellafield. Radiochim Acta 73:73–81

    Google Scholar 

  • Lal D, Somayajulu BLK (1977) Particulate transport of radionuclides 14C and 55Fe to deep waters in the Pacific Ocean. Limnol Oceanogr 22:55–59

    Google Scholar 

  • Landa E, Reimnitz E, Beals D, Pockowski J, Rigor I (1998) Transport of 137Cs and 239,240Pu by ice rafted debris in the Arctic Ocean. Arct 51:27–39

    Google Scholar 

  • Lee SH, Gastaud J, La Rosa JJ, Liong Wee Kwong L, Povinec PP, Wyse E, Fitfield LK, Hausladen PA, Di Tada LM, Santos GM (2001) Analysis of plutonium isotopes in marine samples by radiometric, ICP-MS and AMS techniques. J Radioanal Nucl Chem 248:757–764

    Google Scholar 

  • Lee SH, Povinec PP, Wyse E, Pham MK, Hong GH, Chung CS, Kim SH, Lee HJ (2005) Distribution and inventories of 90Sr, 137Cs, 241Am and Pu isotopes in sediments of the Northwest Pacific Ocean. Mar Geol 216:249–263

    Google Scholar 

  • Lindahl P, Roos P, Holm E, Dahlgaard H (2005) Studies of Np and Pu in the marine environment of Swedish – Danish waters and the North Atlantic Ocean. J Environ Radioact 82:285–301

    Google Scholar 

  • Linsalata P, Simpson HJ, Olsen CR, Cohen N, Trier RM (1985) Plutonium and radiocesium in the water column of the Hudson River estuary. Environ Geol Water Sci 7:193–204

    Google Scholar 

  • Linsley G, Sjoblom K-L, Cabianca T (2004) Overview of point sources of anthropogenic radionuclides in the oceans. In: Livingston HD (ed) Marine radioactivity, vol 6, Radioactivity in the environment. Elsevier, Amsterdam, pp 109–138

    Google Scholar 

  • Livingston HD, Buesseler KO, Izdar E, Konuk T (1988) Characteristics of Chernobyl fallout in the southern Black Sea. In: Guary J, Guegueniat P, Pentreath RJ (eds) Radionuclides: a tool for oceanography. Elsevier, Essex, UK, pp 204–216

    Google Scholar 

  • Livingston H, Kupferman SL, Bowen VT, Moore RM (1984) Vertical profile of artificial radionuclide concentrations in the Central Arctic Ocean. Geochim Cosmochim Acta 48:2195–2203

    Google Scholar 

  • Livingston HD, Mann DR, Casso SA, Schneider DL, Surprenant LD, Bowen VT (1987) Particle and solution phase depth distributions of transuranics and 55Fe in the North Pacific. J Environ Radioact 5:1–24

    Google Scholar 

  • Livingston HD, Povinec PP (2000) Anthropogenic marine radioactivity. Ocean Coastal Manage 43:689–712

    Google Scholar 

  • Livingston HD, Povinec PP (2002) A millennium perspective on the contribution of global fallout radionuclides to the ocean science. Health Phys 82:656–668

    Google Scholar 

  • Marshall WA, Gehrels WR, Garnett MH, Freeman SPHT, Maden C, Xu S (2007) The use of ‘bomb spike’ calibration and high-precision AMS 14C analyses to date salt-marsh sediments deposited during the past three centuries. Quat Res 68:325–337

    Google Scholar 

  • Masque P, Cochran JK, Hirschberg DJ, Dethleff D, Hebbeln D, Winkler A, Pfirman S (2007) Radionuclides in Arctic sea ice: tracers of sources, fates and ice transit time scales. Deep-Sea Res 154:1289–1310

    Google Scholar 

  • Mauldin A, Schlosser P, Newton R, Smithie WM Jr, Bayer R, Rhein M, Peter JE (2010) The velociy and mixing time scale of the Arctic Ocean Boundary Current estimated with transient tracers. J Geophys Res 115:C08002. doi:10.1029/2009JC005965

    Article  Google Scholar 

  • McCubbin D, Leonard KS (1997) Laboratory studies to investigate short-term oxidation and sorption behabiour of neptunium in artificial and natural seawater solutions. Mar Chem 56:107–121

    Google Scholar 

  • McMahon CA, Leon Vintro L, Mitchell PI, Dahlgaard H (2000) Oxidation-state distribution of plutonium in surface and subsurface waters at Thule, northwest Greenland. Appl Radiat Isot 52:697–703

    Google Scholar 

  • Meese DA, Reimnitz E, Tucker WB III, Gow AJ, Bischoff J, Darby D (1997) Evidence for radionuclide transport by sea ice. Sci Total Environ 202:267–278

    Google Scholar 

  • Megens L, van der Plight J, de Leeuw JW (2001) Temporal variations in 13C and 14C concentrations in particulate organic matter from the southern North Sea. Geochim Cosmochim Acta 65:2899–2911

    Google Scholar 

  • Miayo T, Hirose K, Aoyama M, Igarashi Y (2000) Trace of the recent deep water formation in the Japan Sea deduced from historical 137Cs data. Geophys Res Lett 27:3731–3734

    Google Scholar 

  • Muramatsu Y, Rühm W, Yoshida S, Tagami K, Uchida S, Wirth E (2000) Concentrations of 239Pu and 240Pu and their isotopic ratios determined by ICP-MS in soils collected from the Chernobyl 30-km zone. Environ Sci Technol 34:2913–2917

    Google Scholar 

  • Muramatsu Y, Hamilton T, Uchida S, Tagami K, Yoshida S, Rosbinson W (2001) Measurement of 240Pu/239Pu isotopic ratios in soils from the Marshall Islands using ICP-MS. Sci Total Environ 278:151–159

    Google Scholar 

  • Nelson DM, Lovett MB (1978) Oxidation state of plutonium in the Irish Sea. Nat 276:599–601

    Google Scholar 

  • Noshkin VE, Wong KM, Eagle RJ, Gatrousis C (1975) Transuranics and other radionuclides in Bikini lagoon. Concentration data retrieved from aged coral sections. Limnol Oceanogr 20:729–742

    Google Scholar 

  • Noureddine A, Benkrid M, Maoui R, Menacer M, Boudjenoun R, Kadi-Hanifi M, Lee SH, Povinec PP (2008) Radionuclide tracing of water masses and processes in the water column and sediment in the Algerian Basin. J Environ Radioact 99(8):1224–1232

    Google Scholar 

  • Olsen CT, Larsen IL, Cutshall NH, Donoghue JF, Bricker OP, Simpson HJ (1981) Reactor released radionuclides in Susquehanna River sediments. Nat 294:242–245

    Google Scholar 

  • Orlandini KA, Bowling JW, Pinder JE III, Penrose WR (2003) 90Y-90Sr disequilibrium in surface waters: investigating short-term particle dynamics by using a novel isotope pair. Earth Planet Sci Lett 207:141–150

    Google Scholar 

  • Paatero J, Saxen R, Buyukay M, Outola L (2010) Overview of strontium-89,90 deposition measurements in Finland 1963–2005. J Environ Radioact 101:309–316

    Google Scholar 

  • Papucci C, Charmasson S, Delfanti R, Gasco C, Mitchell P, Sanchez-Cabeza JA (1996) Time evolution and levels of man-made radioactivity in the Mediterranean Sea. In: Guéguéniat P, Germain P, Métivier H (eds) Radionuclides in the oceans. Inputs and inventories. Les Edition de Physique. Institut de Protection et de Surete Nuclaire, Les Ulis cedex A, pp 177–197

    Google Scholar 

  • Paytan A, Averyt K, Faul K, Gray E, Thomas E (2007) Barite accumulation, ocean productivity, and Sr/Ba in barite across the Paleocene-Eocene thermal maximum. Geol 35:1139–1142

    Google Scholar 

  • Peng T-H, Key RM, Ostlund HG (1998) Temporal variations of bomb radiocarbon inventory in the Pacific Ocean. Mar Chem 60:3–13

    Google Scholar 

  • Pentreath RJ, Harvey BR, Lovett M (1986) Speciation of fission and activation products in the environment. In: Bulman RA, Cooper JR (eds) Chemical speciation of transuranium nuclides discharged into the marine environment. Elsevier, London, pp 312–325

    Google Scholar 

  • Periáñez R (2005) Modeling the dispersion of radionuclides by a river plume: application to the Rhone River. Cont Shelf Res 25:1583–1603

    Google Scholar 

  • Perkins RW, Thomas CW (1980) Worldwide fallout. In: Hanson WC (ed) Transuranic elements in the environment US DOE/TIC-22800. Office of Health and Environmental Research, Washington DC, pp 53–82

    Google Scholar 

  • Piner KR, Wallace JR, Hamel OS, Mikus R (2006) Evaluation of ageing accuracy of bocaccio (Sebastes paucispinis) rockfish using bomb radiocarbon. Fish Res 77:200–206

    Google Scholar 

  • Povinec PP, Aarkrog A, Buesseler KO, Delfanti R, Hirose K, Hong GH, Ito T, Livingston HD, Nies H, Noshkin VE, Shima S, Togawa O (2005) 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans – WOMARS results. J Environ Radioact 81:63–87

    Google Scholar 

  • Povinec PP, Lee SH, Liong Wee Kwong L, Oregioni B, Jull AJT, Kieser WE, Morgenstern U, Top Z (2010) Top Z (2010) Tritium, radiocarbon, 90Sr and 129I in the Pacific and Indian Oceans. Nucl Instrum Methods Phys Res B 268:1214–1218

    Google Scholar 

  • Povinec PP, Livingston HD, Shima S, Aoyama M, Gastaud J, Goroncy I, Hirose K, Hyunh-Ngoc L, Ikeuchi Y, Ito T, La Rosa J, Kwong LLW, Lee SH, Moriya H, Mulsow S, Oregioni B, Pettersson H, Togawa O (2003) IAEA’97 expedition to the NW Pacific Ocean – results of oceanographic and radionuclide investigations of the water column. Deep-Sea Res II 50:2607–2637

    Google Scholar 

  • Raisbeck GM, Yiou F (1999) 129I in the oceans: origins and applications. Sci Total Environ 237(238):31–41

    Google Scholar 

  • Roether W, Beitzel V, Sultenfu J, Putzka A (1999) The eastern Mediterranean tritium distribution in 1987. J Mar Syst 20:49–61

    Google Scholar 

  • Roy-Barman M (2009) Modelling the effect of boundary scavenging of thorium and protactinium profiles in the ocean. Biogeosci 6:3091–3107

    Google Scholar 

  • Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:51–79

    Google Scholar 

  • Schink DR, Santschi PH, Corapcioglu O, Fehn U (1995) Prospects for “iodine-129 dating” of marine organic matter using AMS. Nucl Instrum Methods Phys Res B 99:524–527

    Google Scholar 

  • Schlosser P, Bonisch G, Kromer B, Loosli HH, Buhler R, Bayer R, Bonani G, Koltermann P (1995) Mid-1980s distribution of tritium, 3He, 14C and 39Ar in the Greenland/Norwegian Seas and the Nansen Basin of the Arctic Ocean. Prog Oceanogr 35:1–28

    Google Scholar 

  • Sholkovitz ER (1983) The geochemistry of plutonium in fresh and marine water environments. Earth Sci Rev 19:95–161

    Google Scholar 

  • Shlokovitz ER, Mann DR (1987) 239,240Pu in estuarine and shelf waters of the north-eastern United States. Estuarine Coast Shelf Sci 25:413–434

    Google Scholar 

  • Smith JN, Ellis KM, Jones EP (1990) Caesium-137 transport into the Arctic Ocean through Fram Strait. J Geophys Res 95(C2):1693–1701

    Google Scholar 

  • Smith JN, Elis KM, Naes K, Dahle S, Matishov D (1995) Sedimentation and mixing rates of radionuclides in Barents Sea sediments off Novaya Zemlya. Deep-Sea Res II 42:1471–1493

    Google Scholar 

  • Smethie WM Jr, Ostlund HG, Loosli HH (1986) Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39. Deep-Sea Res 33:675–703

    Google Scholar 

  • Spencer DW, Bacon MP, Brewer PG (1981) Models of the distribution of 210Pb in a section across the north Equatorial Atalntic Ocean. J Mar Res 39:119–138

    Google Scholar 

  • Stokozov NA, Buesseler KO (1999) Mixing model for the north-west Black Sea using 90Sr and salinity as tracers. J Environ Radioact 43:173–186

    Google Scholar 

  • Tkalin AV, Chaykovskaya EL (2000) Anthropogenic radionuclides in Peter the Great Bay. J Environ Radioact 51:229–238

    Google Scholar 

  • Topcuoğlu S, Güngör N, Kirbaşaoğlu C (2002) Distribution coefficients (Kd) and desorption rates of 137Cs and 241Am in Black Sea sediments. Chemos 49:1367–1373

    Google Scholar 

  • UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) Report to the general assembly with scientific annexes. Annex C: exposures from man-made sources of radiation. http://www.unscear.org. Accessed April 2010

  • Vakulovsky S (1987) Determination of distribution processes, transport routes and transport times in the North Sea and the northern North Atlantic using artificial radionuclides as tracers. In: Guary JC, Guegueniat P, Pentreath RJ (eds) Radionuclides: a tool for oceanography. Elsevier Applied Science, London, pp 271–280

    Google Scholar 

  • Vakulovsky S (2001) Radiation monitoring in Russia at the turn of the millennium. J Eniron Radioact 55:219–220

    Google Scholar 

  • Warneke T, Croudace IW, Warwick PE, Taylor RN (2002) A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes. Earth Planet Sci Lett 203:1047–1057

    Google Scholar 

  • Weimer W, Langford JC (1978) Iron-55 and stable iron in oceanic aerosols: forms and availability. Atmos Environ 12:1201–1205

    Google Scholar 

  • Winger K, Feichter J, Kalinowski MB, Sartorius H, Schlosser C (2005) A new compilation of the atmospheric 85krypton inventories from 1945 to 2000 and its evaluation in a global transport model. J Environ Radioact 80:183–215

    Google Scholar 

  • Wong KM, Jokela TA, Eagle RJ, Brunk JL, Noshkin VE (1992) Radionuclide concentrations, fluxes, and residence times at Santa Monica and San Pedro Basins. Prog Oceanogr 30:353–391

    Google Scholar 

  • Yamada M, Wang Z-L, Zhen J (2006) The extremely high 137Cs inventory in the Sulu Sea: a possible mechanism. J Environ Radioact 90:163–171

    Google Scholar 

  • Yim MS, Caron F (2006) Life cycle and management of carbon-14 from nuclear power generation. Prog Nucl Energy 48:2–36

    Google Scholar 

  • Yiou F, Raisbeck GM, Christensen GC, Holm E (2002) 129I/127I, 129I/137Cs and 129I/99Tc in the Norwegian coastal current from 1980 to 1988. J Environ Radioact 60:61–71

    Google Scholar 

  • Yoshida S, Muramatsu Y (2003) Determination of U and Pu isotopes in environmental samples by inductively coupled plasma mass spectrometry. http://www.nirs.go.jp/report/nene/h13/05/85.htm. Accessed April 2010

Download references

Acknowledgements

The authors are grateful to Dr. Katusmi Hirose and an anonymous reviewer for providing valuable comments on the manuscript. This work was partially supported by Korea Ocean Research and Development PM55861 (GHH), was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344 (TFH), Wayne State’s Board of Governor’s Distinguished Faculty Fellowship (MB). Copyright permission to reproduce here was generously granted for Table 19.2 and Figs. 19.119.5 from Elsevier Limited, UK and Table 19.3 from Terra Scientific Publishing Company, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G.-H. Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hong, GH., Hamilton, T.F., Baskaran, M., Kenna, T.C. (2012). Applications of Anthropogenic Radionuclides as Tracers to Investigate Marine Environmental Processes. In: Baskaran, M. (eds) Handbook of Environmental Isotope Geochemistry. Advances in Isotope Geochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10637-8_19

Download citation

Publish with us

Policies and ethics