Skip to main content

Robust and Efficient Weighted Least Squares Adjustment of Relative Gravity Data

  • Conference paper
  • First Online:
Gravity, Geoid and Earth Observation

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 135))

Abstract

When gravimetric data observations have outliers, using standard least squares (LS) estimation will likely give poor accuracies and unreliable parameter estimates. One of the typical approaches to overcome this problem consists of using the robust estimation techniques. In this paper, we modified the robust estimator of Gervini and Yohai (2002) called REWLSE (Robust and Efficient Weighted Least Squares Estimator), which combines simultaneously high statistical efficiency and high breakdown point by replacing the weight function by a new weight function. This method allows reducing the outlier impacts and makes more use of the information provided by the data. In order to adapt this technique to the relative gravity data, weights are computed using the empirical distribution of the residuals obtained initially by the LTS (Least Trimmed Squares) estimator and by minimizing the mean distances relatively to the LS estimator without outliers. The robustness of the initial estimator is maintained by an adapted cut-off values as suggested by the REWLSE method which allows also a reasonable statistical efficiency. Hereafter we give the advantage and the pertinence of REWLSE procedure on real and semi-simulated gravity data by comparing it with conventional LS and other robust approaches like M and MM estimators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baarda, W. (1968). A testing procedure for use in geodetic network. Netherlands Geodetic commission, Publications on geodesy, Vol. 2, Nphotogro. 5, delft, 97 pp.

    Google Scholar 

  • Becker, M. (1989). Adjustment of microgravimetric measurements for detecting local and regional displacements. In: Rummel, R. and R.G. Hipkin (eds), Proceedings of IAG Symposium 103: Gravity, Gradiometry and Gravimetry. Springer-Verlag, Berlin, pp. 149–161.

    Google Scholar 

  • Carosio, A. (1979). Robuste ausgleichung. Vermessung, photogrammetrie und kulturtechnik, 77, 293–297.

    Google Scholar 

  • Csapo, G., M. Kis, and L. Völgyesi (2003). Different adjustment methods for the Hungarian part of the unified Gravity Network. XXIII General Assembly of the International Union of Geodesy and Geophysics. Sapporo, Japan.

    Google Scholar 

  • Gervini, D., V.J. Yohai (2002). A class of robust and fully efficient regression estimators. Ann. Stat., 30(2), 583–616.

    Article  Google Scholar 

  • Hampel, F. (1973). Robust estimation: A condensed partial survey. Z. Wahrsch. Verw. Gebiete, 27, 87–104.

    Article  Google Scholar 

  • Hampel, F., E.M. Ronchetti, P.J. Rosseeuw, and W.A. Stahel (1986). Robust statistics: The approach based on influence functions. Wiley, New York.

    Google Scholar 

  • Hekimoglu, S (2005). Do robust methods identify outliers more reliably than conventional test for outlier, ZFV, 2005/3, 174–180.

    Google Scholar 

  • Huber, P.J. (1964). Robust estimation of location parameter. Ann. Math. Statist., 35, 73–101.

    Article  Google Scholar 

  • Huber, P.J. (1981). Robust statistics. Wiley, New York.

    Book  Google Scholar 

  • Hwang, C., C. Wang, L. Lee (2002). Adjustment of gravity measurements using weighted and datum-free constraints. Comput. Geosci., 28, 1005–1015.

    Article  Google Scholar 

  • Koch, K.R. (1987). Parameter estimation and hypothesis testing in linear models. Edition Springer- Verlag.

    Google Scholar 

  • Mäkinen, J. (1981). The treatment of outlying observations in the adjustment of the measurements on the Nordic land uplift gravity lines, unpublished manuscript, Helsinki.

    Google Scholar 

  • Pope, A.J. (1976). The statistics of residuals and detection of outliers. Tech. Rep. NOS65 NGS1, Rockville, Md., 617 pp.

    Google Scholar 

  • Rousseeuw, P.J. (1984). Least median of squares, regression. J. Am. Stat. Assoc., 79, 871–881.

    Article  Google Scholar 

  • Rousseeuw, P.J. and V.J. Yohai (1984). Robust regression by means of S estimators. In: Franke, J., W. Härdle, and R.D. Martin (eds), Robust and Nonlinear Time Series Analysis, Lectures Notes in Statistics 26. Springer Verlag, New York, pp. 256–274.

    Chapter  Google Scholar 

  • Rousseeuw, P.J. and A.M. Leroy (1987). Robust regression and outlier detection. Wiley, New York.

    Book  Google Scholar 

  • Rousseeuw, P.J. and K. Van Dressen (2006). Computing LTS Regression for Large Data Sets. Data Mining and Knowledge Discovery, 12, 29–45, 2006, DOI: 10.1007/s10618-005-0024-4.

    Article  Google Scholar 

  • Ruppert, D. (1992). Computing S estimators for regression and multivariate location/dispersion. J. Compt. Graph. Stat., 1, 253–270.

    Google Scholar 

  • Wicki, F. (2001). Robust estimator for the adjustment of geodetic networks. Proceeding of the first international symposium on robust statistics and fuzzy techniques in geodesy and GIS. Report N0. 295, Institute of Geodesy and photogrammetry. ETH Zürich, pp. 53–60.

    Google Scholar 

  • Wieser, A. and F.K. Brunner (2001). Robust estimation applied to correlated GPS phase observations. In: Carosio, A. and H. Kutterer (eds), Proceedings of the first international symposium on robust statistics and fuzzy techniques in Geodesy and GIS, ETH Zürich, pp. 193–198.

    Google Scholar 

  • Yang, Y., M.K. Cheng, C.K. Shum, and B.D. Tapeley (1999). Robust estimation of systematic errors of satellite laser range. J. Geod. 73:345–349.

    Article  Google Scholar 

  • Yang, Y., L. Song, and T. Xu (2002). Robust estimator for correlated observations based on bifactor equivalent weights. J. Geod. 76, 353–358, doi: 10.1007/s00190-002-0256-7.

    Article  Google Scholar 

  • Yohai, V.J. (1987). High breakdown-point and high efficiency estimates for regression. Ann. Stat., 15, 642–665.

    Article  Google Scholar 

  • Zhu, J. (1986). The unification of different criteria of estimation in adjustment. Acta Geodetica et Cartographica Sinica, 15(4).

    Google Scholar 

  • Zhu, J. (1996). Robustness and the robust estimate. J. Geod. 70, 586–590.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to first thank Prof C. Hwang from NCTU university of Taiwan for making available the data set used in this research. They also would like to thank Dr D. Gervini from university of Zurich for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Touati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Touati, F., Kahlouche, S., Idres, M. (2010). Robust and Efficient Weighted Least Squares Adjustment of Relative Gravity Data. In: Mertikas, S. (eds) Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_9

Download citation

Publish with us

Policies and ethics