Skip to main content

Secular Geoid Rate from GRACE for Vertical Datum Modernization

  • Conference paper
  • First Online:
Book cover Gravity, Geoid and Earth Observation

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 135))

Abstract

GRACE-derived geoid rates are studied for North-America, where the adjustment of the Earth to ancient ice sheets causes a secular geoid increase up to 1.3 mm/year. These significant geoid changes are of particular interest for establishing a new geoid-based vertical datum in Canada and other high accuracy applications. To quantify the uncertainty of the derived rate of change of the geoid, several methods for GRACE error approximation are studied using: (i) calibrated standard deviations, (ii) a full covariance matrix, and (iii) residuals of least-squares fit of a trend and periodic variations to the time series of spectral coefficients. It is found that the residuals give the largest error estimates, probably because correlated errors are captured better. Furthermore, through maximizing the signal-to-noise ratio, it is found that the Swenson and Wahr (2006) filter of correlated GRACE errors should be applied to coefficients above degree 22 and order 4. Measurement errors are largely longitude independent, with magnitude around 0.06 mm/year. The largest geoid rate uncertainty is estimated in the area of present-day ice melt in Alaska and south of the Great Lakes and south-west of Hudson Bay (over 0.3 mm/year) due to uncertainty in continental water storage. For the creation of a geoid rate model based on GRACE data it is important that efforts are focused on reducing uncertainty in these areas, rather than improving post-processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ågren, J. and R. Svensson (2007). System definition and postglacial land uplift model for the new Swedish height system RH 2000. Lantmäteriet, Rapportserie: Geodesi och Geografiska informationssystem, 2006:X (in print), Gävle.

    Google Scholar 

  • Bettadpur, S. (2008). GRACE: Progress towards product improvement, and prospects for synergy with GOCE, 2008. Oral presentation, GGEO 2008 Symposium, June 23–27, Chania, Crete, Greece.

    Google Scholar 

  • Döll, P., F. Kaspar, and B., Lehner (2003). A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol., 270, 105–134.

    Article  Google Scholar 

  • Hunger, M. and P. Döll (2008). Value of river discharge data for global-scale hydrological modeling. Hydrol. Earth Syst. Sci., 12, 841–861.

    Article  Google Scholar 

  • Luthcke, S., A. Arendt, D. Rowlands, J. McCarthy, and C. Larsen (2008). Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions. J. Glaciol., 54(188), 767–777.

    Article  Google Scholar 

  • Milly, P.C.D. and A.B. Shmakin (2002). Global modeling of land water and energy balances, part I: The land dynamics (LaD) model. J. Hydrometeorol., 3(3), 283–299.

    Article  Google Scholar 

  • Rangelova, E. (2007). A dynamic vertical datum for Canada. PhD thesis, Dept. of Geomatics Engineering, University of Calgary.

    Google Scholar 

  • Rangelova, E. and M.G. Sideris (2008). Contributions of terrestrial and GRACE data to the study of the secular geoid changes in North America. J. Geodyn., 46, 131–143, doi:10.1016/j.jog.2008.03.006.

    Article  Google Scholar 

  • Rangelova, E., W. van der Wal, M.G. Sideris, and P. Wu (2008). Spatiotemporal analysis of the GRACE-derived mass variations in North America by means of multi-channel singular spectrum analysis, GGEO 2008 Symposium, June 23–27, accepted for proceedings.

    Google Scholar 

  • Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll (2004). The global land data assimilation system. Bull. Am. Meteorol. Soc., 85(3), 381–394.

    Article  Google Scholar 

  • Steffen, H., H. Denker, and J. Müller (2008). Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamical models. J. Geodyn., 46, 155–164.

    Article  Google Scholar 

  • Swenson, S., D. Chambers, and J. Wahr (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res., 113, doi:10.1029/2007JB005338.

    Google Scholar 

  • Swenson, S. and J. Wahr (2006). Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

    Google Scholar 

  • Tamisiea, M.E., J.X. Mitrovica, and J.L. Davis (2007). GRACE Gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science, 316, 881–883.

    Article  Google Scholar 

  • Tushingham, A.M. and W.R. Peltier (1991). ICE-3G: A new global model of late Pleistocene deglacation based upon geophysical predictions of post-glacial relative sea level change. J. Geophys. Res., 96(B3), 4497–4523.

    Article  Google Scholar 

  • Van der Wal, W., P. Wu, M.G. Sideris, and C.K. Shum (2008). Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America. J. Geodyn., 46, 144–155, doi:10.1016/j.jog.2008.03.007.

    Article  Google Scholar 

  • Velicogna, I. and J. Wahr (2002). Postglacial rebound and Earth’s viscosity structure from GRACE. J. Geophys. Res., 107(B12), doi: 10.1029/2001JB001735.

    Google Scholar 

  • Wahr, J., S. Swenson, and I. Velicogna (2006). Accuracy of GRACE mass estimates. Geophys. Res. Lett., 33, doi: 10.1029/2005GL025305.

    Google Scholar 

  • Wahr, J., S. Swenson, V. Zlotnicki, and I. Velicogna (2004). Time-variable gravity from GRACE: First results. Geophys. Res. Lett., 31, L11501, doi:10.1029/2004GL019779.

    Google Scholar 

  • Witze, A. (2008). Climate change: losing Greenland. Nature, 452, 798–802, doi:10.1038/452798a.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the two anynomous reviewers for their comments, John Ries and Srinivas Bettadpur of CSR Texas for providing sample covariance matrices and for discussion, John Wahr, Holger Steffen and Balaji Devaraju for discussion and advice for GRACE data analysis, Kristina Fiedler and Petra Döll for providing the WGHM model output, Chris Milly for making available the LaD model output and Matt Rodell for making available the GLDAS model output. Financial support has been provided by NSERC and GEOIDE NCE grants to Drs. Sideris and Wu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. van der Wal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van der Wal, W., Rangelova, E., Sideris, M., Wu, P. (2010). Secular Geoid Rate from GRACE for Vertical Datum Modernization. In: Mertikas, S. (eds) Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_81

Download citation

Publish with us

Policies and ethics