Skip to main content

An Inverse Gravimetric Problem with GOCE Data

  • Conference paper
  • First Online:
Gravity, Geoid and Earth Observation

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 135))

Abstract

Satellite missions dedicated to the estimation of the gravity field and its variation, like GRACE and GOCE, have drawn new attention on inverse gravimetric problems and, in particular, on the capability of these satellite data sets to describe nature and geographical location of the gravimetric signal.

In this paper a semi-analytical method to detect Earth’s density anomalies, based on Fourier analysis and Wiener filter, has been developed. The method has been tested on simulated observations of the gravitational potential and its second radial derivatives with the aim of assessing the capability of the GOCE mission to detect the shape of the oceanic floor from satellite data only.

Despite the simplistic hypotheses involved in our example, positive results have been obtained, showing that the shape of the oceanic floor can be estimated with a reasonable accuracy at a resolution consistent with the expected GOCE performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrikosov, O. and P. Schwintzer (2004). Recovery of the Earth’s gravity field from GOCE satellite gravity gradiometry: a case study. In: Proceedings of the 2nd International GOCE User Workshop, 8–10 March 2004, Frascati, Italy.

    Google Scholar 

  • Ballani, L. and D. Stromeyer (1982). The inverse gravimetric problem: a Hilbert space approach. In: Holota P. (ed), Proceedings of the International Symposium ‘Figure of the Earth, the Moon, and other Planets’, 20–25 September 1982, Prague, Czech Republic, pp. 359–373.

    Google Scholar 

  • Ballani, L. and D. Stromeyer (1990). On the structure of uniqueness in linear inverse source problems. In: Vogel, A. et al. (eds), Theory and practice of geophysical data inversion, Proceedings of the 8th International Mathematical Geophysics Seminar on Model Optimization in Exploration Geophysics. Vieweg-Verlag, Braunschweig, Germany.

    Google Scholar 

  • Catastini, G., S. Cesare, S. De Sanctis, M. Dumontel, M. Parisch, and G. Sechi (2007). Predictions of the GOCE in-flight performances with the End-to-End System Simulator. In: Proceedings of the 3rd International GOCE User Workshop, 6–8 November 2006, Frascati, Italy, pp. 9–16.

    Google Scholar 

  • Cesare, S. (2002). Performance requirements and budgets for the gradiometric mission. Technical Note, GOC-TN-AI-0027, Alenia Spazio, Turin, Italy.

    Google Scholar 

  • ESA (1999). Gravity Field and steady-state ocean circulation mission. ESA SP-1233 (1), ESA Publication Division, c/o ESTEC, Noordwijk, The Netherlands.

    Google Scholar 

  • Gangui, A.H. (1998). A combined structural interpretation based on seismic data and 3-D gravity modeling in the Northern Puna, Eastern Cordillera, Argentina. Dissertation FU Berlin, Berliner Geowissenschaftliche Abhandlungen, Reihe B, Band 27, Berlin, Germany.

    Google Scholar 

  • Hein, G., F. Sansò, G. Strykowsky, and C.C. Tscherning (1989). On the Choice of Norm and Base Functions for the Solution of the Inverse Gravimetric Problem. Ricerche di Geodesia Topografia Fotogrammetria, Milano, Italy, CLUP, pp. 121–138.

    Google Scholar 

  • Heiskanen, W.A. and H. Moritz (1967). Physical geodesy. Springer-Verlag, Wien, Austria.

    Google Scholar 

  • Jekeli, C. (1999). The determination of gravitational potential differences from satellite-to-satellite tracking. Celest. Mech. Dyn. Astr., 75, 85–101.

    Article  Google Scholar 

  • Kirchner, A. (1997). 3D-Dichtemodellierung zur Anpassung des Schwere- und des Schwerepotentialfeldes der zentralen Anden. Dissertation FU Berlin, Berliner Geowissenschaftliche Abhandlungen, Reihe B, Band 25, Berlin, Germany.

    Google Scholar 

  • Lessel, K. (1998). Die Krustenstruktur der Zentralen Anden in Nordchile (21–24°S), abgeleitet aus 3D-Modellierungen refraktionsseismischer Daten. Dissertation FU Berlin, Berliner Geowissenschaftliche Abhandlungen, Reihe B, Band 31, Berlin, Germany.

    Google Scholar 

  • Migliaccio, F., M. Reguzzoni, F. Sansò, N. Tselfes, C.C. Tscherning, and M. Veicherts (2007). The latest test of the space-wise approach for GOCE data analysis. In: Proceedings of the 3rd International GOCE User Workshop, 6–8 November 2006, Frascati, Italy, pp. 311–318.

    Google Scholar 

  • Migliaccio, F., M. Reguzzoni, F. Sansò, and P. Zatelli (2004). GOCE: dealing with large attitude variations in the conceptual structure of the space-wise approach. In: Proceedings of the 2nd International GOCE User Workshop. 8–10 March 2004, Frascati, Italy.

    Google Scholar 

  • Pail, R. (2005). A parametric study on the impact of satellite attitude errors on GOCE gravity field recovery. J. Geod., 79(4–5), 231–241.

    Article  Google Scholar 

  • Pail, R., W.D. Schuh, and M. Wermuth (2005). GOCE Gravity Field Processing. In: Jekeli, C., L. Bastos, and J. Fernandes (eds), International Association of Geodesy Symposia, ‘Gravity, geoid and space missions’, vol. 129, Springer-Verlag, Berlin, Germany, pp. 36–41.

    Google Scholar 

  • Reguzzoni, M. and N. Tselfes (2009). Optimal multi-step collocation: application to the space-wise approach for GOCE data analysis. J. Geod., 83(1), 13–29.

    Article  Google Scholar 

  • Sansò, F. and F. Sacerdote (1996). Optimal linear estimation theory for continuous fields of observations. In: Lecture Notes in Earth Science: Inverse Methods, n. 63, Springer-Verlag, Wien, Austria.

    Google Scholar 

  • Vajda, P. (2006). Inverse problem of gravimetry. In: Reiffers, M. (ed), Proceeding of the 15th Conference of Slovak Physicists, 11–14 September 2006, Stará Lesná, Slovak Republic, 37–41.

    Google Scholar 

  • Visser, P.N.A.M., N. Sneeuw, and C. Gerlach (2003). Energy integral method for gravity field determination from satellite orbit coordinates. J. Geod., 77(3–4), 207–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Reguzzoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reguzzoni, M., Sampietro, D. (2010). An Inverse Gravimetric Problem with GOCE Data. In: Mertikas, S. (eds) Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia, vol 135. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10634-7_60

Download citation

Publish with us

Policies and ethics