Advertisement

On Ambiguities in Definitions and Applications of Bouguer Gravity Anomaly

  • P. VajdaEmail author
  • P. Vaníček
  • P. Novák
  • R. Tenzer
  • A. Ellmann
  • B. Meurers
Conference paper
  • 2k Downloads
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 135)

Abstract

Over decades diverse definitions and use of the Bouguer gravity anomaly found place in geodetic and geophysical applications. We discuss three distinct Bouguer anomalies. Their definitions vary due to the presence or absence of various effects (corrections), such as the geophysical indirect effect and the secondary indirect effects. Here we discuss the significance and magnitude of these effects. We point out the different understanding of the Bouguer anomaly in geophysics compared to geodesy. We also address the diverse demands on the gravity data in geophysical and geodetic applications, such as the issue of the topographic density and the lower boundary in the volume integral for the topographic correction, as well as the need for the bathymetric correction. Recommendations are made to bring the definitions and terminology into accord with the potential theory.

Keywords

Bouguer anomaly Gravity disturbance Topographic correction SITE Geophysical indirect effect 

Notes

Acknowledgements

Peter Vajda acknowledges the partial support of the VEGA grant agency projects No. 2/3004/23 and 2/6019/26. Pavel Novák was supported by the Grant 205/08/1103 of the Czech Science Foundation.

References

  1. Blakely, R.J. (1995). Potential theory in gravity and magnetic applications. Cambridge University Press, New York.CrossRefGoogle Scholar
  2. Heiskanen, W.A. and H. Moritz (1967). Physical geodesy. Freeman, San Francisco.Google Scholar
  3. Hinze, W.J., C. Aiken, J. Brozena, B. Coakley, D. Dater, G. Flanagan, R. Forsberg, Th. Hildenbrand, G.R. Keller, J. Kellogg, R. Kucks, X. Li, A. Mainville, R. Morin, M. Pilkington, D. Plouff, D. Ravat, D. Roman, J. Urrutia-Fucugauchi, M. Véronneau, M. Webring, and D. Winester (2005). New standards for reducing gravity data: The North American gravity database. Geophysics, 70(4), J25–J32, doi: 10.1190/1.1988183.Google Scholar
  4. Vajda, P., P. Vaníček, and B. Meurers (2006). A new physical foundation for anomalous gravity. Stud. Geophys. Geod., 50(2), 189–216, doi: 10.1007/s11200-006-0012-1.CrossRefGoogle Scholar
  5. Vajda, P., P. Vaníček, P. Novák, R. Tenzer, and A. Ellmann (2007). Secondary indirect effects in gravity anomaly data inversion or interpretation. J. Geophys. Res., 112, B06411, doi: 10.1029/2006 JB004470.CrossRefGoogle Scholar
  6. Vajda, P., A. Ellmann, B. Meurers, P. Vaníček, P. Novák, and R. Tenzer (2008). Global ellipsoid-referenced topographic, bathymetric and stripping corrections to gravity disturbance. Stud. Geophys. Geod., 52(1), 19–34, doi: 10.1007/s11200-008-00 03-5.CrossRefGoogle Scholar
  7. Vaníček, P., J. Huang, P. Novák, S. Pagiatakis, M. Véronneau, Z. Martinec, and W.E. Featherstone (1999). Determination of the boundary values for the Stokes-Helmert problem. J. Geod., 73(4), 180–192, doi:10.1007/s001900050235.CrossRefGoogle Scholar
  8. Vaníček, P., R. Tenzer, L.E. Sjöberg, Z. Martinec, and W.E. Featherstone (2004). New views of the spherical Bouguer gravity anomaly. Geoph. J. Int., 159(2), 460–472, doi: 10.1111/j.1365-246X.2004. 02435.x.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • P. Vajda
    • 1
    Email author
  • P. Vaníček
    • 2
  • P. Novák
    • 3
    • 4
  • R. Tenzer
    • 5
  • A. Ellmann
    • 6
  • B. Meurers
    • 7
  1. 1.Geophysical Institute, Slovak Academy of SciencesBratislavaSlovak Republic
  2. 2.Department of Geodesy and Geomatics EngineeringUniversity of New BrunswickFrederictonCanada
  3. 3.Research Institute of Geodesy, Topography, and CartographyZdibyCzech Republic
  4. 4.Department of MathematicsUniversity of West BohemiaPilsenCzech Republic
  5. 5.Delft Institute of Earth Observation and Space Systems (DEOS)Delft University of TechnologyDelftThe Netherlands
  6. 6.Department of Civil EngineeringTallinn University of TechnologyTallinnEstonia
  7. 7.Institute of Meteorology and Geophysics, University of ViennaViennaAustria

Personalised recommendations